Какие бактерии образуют симбиоз с бобовыми растениями. Факторы существования симбиоза b

Толерантность в мире растений, или Симбиоз по-новому

В мире растений существует масса примеров «терпимого» отношения друг к другу. Так, прекрасно уживаются рядом малина и крапива, пшеница и васильки. Корневые системы многих древесных растений вступают в тесную взаимосвязь с мицелием некоторых высших грибов, образуя микоризу . Одним из хрестоматийных примеров подобных взаимоотношений служит и классический симбиоз – взаимосвязь бобовых растений с азотфиксирующими бактериями. Дружественный союз клубеньковых бактерий с бобовыми сформировался очень давно, в процессе эволюционного развития. И сейчас о нем уже можно говорить как о полноценной экологической системе. Между растением-хозяином и бактериями-симбионтами происходит обмен разнообразными химическими соединениями – продуктами обмена веществ. Микробы при этом получают питание (главным образом, сахара) и энергию для собственной жизнедеятельности, отдавая взамен растению азотные соединения и физиологически активные вещества, стимулирующие его рост и развитие.

Бобовые растения, благодаря симбиозу с азотфиксирующими бактериями рода Rhizobium обогащают почву азотными соединениями. Впервые на это обратил внимание Буссенго, а доказательства фиксации азота микробами, живущими в симбиозе с бобовыми растениями, были получены немецкими учеными Хелльригелем и Вильфартом в 1886–1888 гг. Сравнивая источники азота для злаков и бобовых, они обнаружили, что бобовые, в отличие от злаков, получающих азот из минеральных веществ почвы, способны фиксировать атмосферный азот. Хелльригель объяснил подобную способность бобовых растений наличием на их корнях клубеньков, развитие которых вызывается микроорганизмами. Вывод немецкого ученого был подтвержден через несколько лет, когда голландскому бактериологу Мартину Бейеринку удалось выделить азотфиксирующий микроорганизм из клубеньков в чистой культуре. В дальнейшем была показана способность ризобий инфицировать корни бобовых и вызывать образование на них клубеньков, в которых собственно и протекает азотфиксация.

Бактерии рода ризобиум – это аэробные грамотрицательные палочки длиной 0,7–1,8 мкм, живущие в почве и на поверхности растений. При инфицировании бобовых вызывают у последних образование на корнях клубневидных образований.

Образование клубеньков у различных видов растений:
1
– азолла; 2 – клубеньки чины; клевера; вики; 3 – клубеньки на корнях арахиса; 4 – клубеньки на корнях ольхи; 5 – возникновение инфекционных нитей в корневых волосках; 6 – искривление корневых волосков бобовых в присутствии клубеньковых бактерий; 7 – клетки бактерий из клубеньков люцерны; 8 – бактероид клубеньковых бактерий клевера; 9 – клетки клубеньковых бактерий на поверхности волоска; 10 – азотобактер (делящаяся клетка); 11 – клубеньковая ткань ольхи

Молодая, подвижная микробная клетка приближается к корню на основе градиента специфических соединений, выделяемых корнем бобового растения. Белок на поверхности корневых волосков – лектин – «узнает» полисахарид наружной поверхности клеточной стенки бактерии и прочно связывается с ним. Заражение растения происходит только через молодые корневые волоски. Бактерии внедряются в самом конце или около конца волоска и растут в нем в виде инфекционной нити до его основания. Затем такие нити, одетые целлюлозной оболочкой, проникают сквозь тонкие стенки молодых клеток эпидермиса в кору корня. Натолкнувшись здесь на одну из тетраплоидных клеток коры, нить стимулирует деление этой и соседних диплоидных клеток. В результате такого разрастания тканей происходит образование клубеньков. Бактерии в клубеньках размножаются очень быстро и образуют крупные клетки неправильной формы (бактероиды ), объем которых может в 10–12 раз превышать объем свободноживущих ризобий. Бактероиды располагаются по отдельности или группами, окруженные мембраной, в цитоплазме растительных клеток. Ткань, заполненная бактериями, имеет красноватую окраску – она содержит пигмент леггемоглобин, родственный гемоглобину. Образование пигмента – это специфический результат симбиоза: простетическая группа (протогем) синтезируется бактероидами, а белковый компонент при участии растения. Молекулярный азот фиксируют только те клубеньки, в которых имеется леггемоглобин. Фиксация азота происходит только в бактероидах, причем 95% фиксированного азота в виде ионов аммония переходит в цитоплазму растения-хозяина.

Для каждого рода бобовых имеются свои разновидности (штаммы) бактерий, которые называют по названию растения-хозяина. Например, Rhizobium trifolii – клубеньковые бактерии клевера, Rh.lupini – клубеньковые бактерии люпина и пр.

Симбиотическая фиксация азота в корневых клубеньках бобовых: 1 – корень гороха с клубеньками; 2 – клубеньки в разрезе;
3
– растительная клетка в разрезе, заполненная бактериями; 4 – бактерии, находящиеся в клетках растения приобретают необычную форму; 5 – внедрение бактерий через кончики корневых волосков, и рост инфекционных нитей

Однако бобовые растения вовсе не являются монополистами в создании продуктивных связей с азотфиксирующими микроорганизмами. Так, поспорить с бобовыми по степени накопления в почве доступных соединений азота может всем известное древесное растение – ольха (Alnus ). У нее тоже обнаружены клубеньки, представляющие собой густые сплетения корней, разветвленных наподобие кораллов и прекративших рост. Однако микросимбионтами ольхи являются другие микроорганизмы – актиномицеты из рода Franckia . Система клубеньков на корнях ольхи по аналогии с микоризой носит название актиноризы. В настоящее время подобный тип взаимоотношений покрытосеменных растений с азотфиксирующими актиномицетами описан более чем для двух сотен видов, преимущественно древесных. И список этот ежегодно пополняется. Интересно то, что если в симбиозе с ризобиями макросимбионтами являются только растения семейства бобовые, то в отношении актиномицетов список семейств растений-макросимбионтов более обширен. Широко известны симбиозы с актиномицетами таких растений, как облепиха (Hippophae ), лох (Elaengnus ), восковница (Myrica ). Актиноризные растения распространены по всему земному шару, но основная их масса сосредоточена в умеренной зоне, в то время как большинство бобовых предпочитает более теплые области. Накопление азота в почве при участии таких растений может достигать 150–300 кг на 1 га в год. Актиноризный симбиоз был открыт в XIX в., но полезность растений, имеющих актиноризу, для хозяйственной деятельности людей была замечена гораздо раньше.

В течение многих веков ольху высаживали для улучшения почвы в Англии, Южной Америке, Китае и даже на Аляске. В Скандинавии традиционно для этих целей применяют облепиху. Ольха, благодаря наличию актиноризы, улучшает рост сосны, тополя, ели, дуба, ясеня.

Древесные растения-симбионты могут широко применяться для улучшения почв. Черная и серая ольха, высаженные по берегам водоемов, не только закрепляют их, предохраняя почву от размывания, но и значительно обогащают ее азотом, что, в свою очередь, стимулирует появление на ней травяного покрова.
В тропических странах для закрепления почвы и повышения ее плодородия высаживают казуарину прибрежную – тропическое растение, родиной которого является побережье Индийского океана. Кстати у этого растения клубеньки состоят из рыхлого пучка утолщенных корней с отрицательно геотропным ростом.

Уже упоминавшийся М.Бейеринк в 1925 г. обнаружил образования, подобные клубенькам бобовых, на корнях луговых травянистых растений, к семейству бобовых не относящихся. Микроорганизмы, выделенные Бейеринком из корней луговых злаков, относились к роду спирилл – Spirillium lipoferum Beijerinckii. Однако понадобилось почти полвека и немало накопленного фактического материала, чтобы на это явление обратили более пристальное внимание. В 1938 г. русский ученый В.Н. Ногтев обнаружил веретенообразные утолщения на корнях лугового лисохвоста. В 1972 г. М.З. Магавириани описал наличие клубеньков у многих растений, произрастающих на Кавказе. В основном они относились к семейству сложноцветных. Исследуя Сибирский регион, микробиологи И.Л. Клевенская и И.С. Роднюк обнаружили клубеньки на корнях более сотни видов растений, из более чем 20 семействам. Большая часть растений-симбионтов Сибири относилась к однодольным. У травянистых растений рода Gunnera клубеньки на листьях образуют азотфиксирующие бактерии рода Nostoc.

Наконец, остановимся на случае необычного симбиоза растений с микроорганизмами. Но вначале немного истории. Существует не так уж много растений среди огромного их количества, которые люди бы обожествляли. Такой чести удостоился скромный и внешне ничем особо не приметный водный папоротник азолла (Azolla ).

Во вьетнамской провинции Тхай-Пинь расположена небольшая деревушка Лаван, в которой стоит пагода, посвященная богине Азолли. Легенда гласит, что жительница деревни Лаван, вьетнамская крестьянка Ба-Хен, однажды перенесла на свое рисовое поле азоллу. И, о чудо, урожай на ее поле возрос в несколько раз. После смерти крестьянки ее стали почитать как святую, а в честь растения, которое повысило урожай риса, построили пагоду. Азоллу стали использовать как удобрение для рисовых полей. После 1945 г. она широко вошла в практику сельского хозяйства. Необычные свойства папоротника объясняются тем, что он тоже взаимодействует с микробами-азотфиксаторами и благодаря этому обогащает растущий рядом рис доступным азотом.

Необычность симбиоза азоллы с микробами состоит в том, что на корнях не образуется привычных клубеньков или иных выростов. Микробы-азотфиксаторы представлены цианобактериями из рода Anabaena . Цианобактерии занимают полость на нижней стороне листочка папоротника, недалеко от его основания. По мере роста листа и размножения цианобактерий полость заполняется, а входное отверстие зарастает. Образуется камера, в которой затем и происходит усвоение атмосферного азота, свободно проникающего через ткани листа.

Во Вьетнаме на рисовых полях часто встречается азолла перистая (A. pinnata ). Этот водный папоротник широко распространен в водоемах Австралии, тропической Африки и Юго-Восточной Азии. Для него характерна яркая красно-коричневая окраска. Способности к азотфиксации в симбиозе этого вида азоллы с анабеной впечатляющи. В лаборатории папоротник накапливает за сутки до 7 мг чистого азота на 1 г сухой массы. В поле каждый гектар, на котором растет азолла, дает до 1000 – 1400 кг азота в год. Для сравнения: наиболее продуктивная из бобовых культур – люцерна – оставляет в пахотном слое не более 400 кг азота на 1 га. Подобную высокую продуктивность можно объяснить принципиально иными механизмами функционирования системы растение – микроорганизм. Азотфиксация – процесс очень энергоемкий. Источником энергии для нее в системе бобовые – ризобии служат продукты фотосинтеза бобовых. В системе же азолла–анабена оба компонента равно участвуют в фотосинтезе, увеличивая запасы энергии, необходимые для азотфиксации. Благодаря способности к накоплению азота азолла является хорошим белковым кормом для домашних животных. Она содержит до 20–25% белка от сухой массы растений, что вдвое больше, чем у зерновых культур, а также до 35% углеводов. Во Вьетнаме азоллу выращивают в специальных водоемах, собирая по мере разрастания и скармливая скоту.

Для повышения урожая риса азоллу переносят на рисовые поля, уже залитые водой и засаженные молодыми растеньицами риса. Поверхность воды быстро зарастает азоллой, которая через некоторое время, с наступлением жаркого периода, отмирает, образуя большую массу органического удобрения. Распад биомассы папоротника после его отмирания происходит за неделю, а через месяц освободившиеся соединения азота становятся доступными растениям. При этом урожайность риса возрастает на 20%.

Родственницу азоллы перистой можно обнаружить у аквариумистов. Азолла каролинская (A.caroliniana ) – распространенное аквариумное растение. Этот вид азоллы распространен в тропиках и субтропиках Северной и Южной Америки, встречается также на западе Индии. Азолла каролинская образует на поверхности воды красивые плавающие островки. Растение очень нежное, хрупкие стебли покрыты попарно расположенными округлыми листьями от бледно-зеленого до красно-коричневого цветов. Это вид хорошо растет в тропических аквариумах с очень ярким освещением.

Литература

Самсонов С.К. В союзе с микробами. – М.: Знание, 1990.
Полевой В.В. Физиология растений. – М.: Высшая школа, 1989.
Игнатов В.В. Биологическая фиксация азота и азотфиксаторы, 1989.

Д ревесные и другие представители флоры способны устанавливать между собой взаимовыгодные отношения. Формы таких положительных контактов многообразны и чрезвычайно разнородны – от косвенных и временных взаимодействий до тесного постоянного сожительства, когда сосуществование с соседом является необходимым условием для жизни. Каким же образом растения оказывают друг другу помощь и поддержку?

Желательно и обязательно

Отношения, при которых растительные организмы получают обоюдную выгоду, можно отнести к мутуалистическим (мутуализм – от лат. mutuus – «взаимный»). Обычно разделяют факультативный и облигатный (от лат. obligatus – «непременный», «обязательный») мутуализм.

  • В первом случае взаимное сотрудничество помогает выживанию, но не является обязательным для организмов.
  • Во втором – сотрудничество жизненно необходимо для обоих партнеров-участников.

Если при этом сосуществующие партнеры неразделимы и зависят друг от друга, то подобные связи называют симбиотическими (симбиоз – от греч. symbiosis – «совместная жизнь»).

Совместная жизнь

Эпифитные лишайники

Широко известен симбиоз между грибным мицелием и корнями высших растений – . При взаимодействии гиф гриба и клеток корня всасывающая поверхность корневой системы многократно увеличивается, что способствует более интенсивному поступлению питательных веществ и воды из почвы и (как следствие) лучшему развитию растения-хозяина. В ответ гриб получает от растительного организма углеводы, витамины, фитогормоны и т. п. Кроме того, сами микоризообразующие грибы синтезируют многие биологически активные вещества, используемые растениями, переводят в растворимую форму трудноусвояемые почвенные соединения фосфора, защищают корни от заражения потенциальными патогенами, участвуют в обмене метаболитами между растениями.

В настоящее время микоризообразование выявлено практически для всех голосеменных и большинства покрытосеменных. Многие растения (орхидные, грушанковые, некоторые вересковые и древесные) без микоризы развиваются очень плохо либо не развиваются вообще, особенно на бедных почвах. У черники и брусники грибы-микоризообразователи находят даже в зародышах семян. В целом микориза не только помогает стратегии выживания отдельных растительных организмов, но и объединяет их в единое целостное сообщество.

Еще один классический пример тесных мутуалистических отношений в фитоценозе – симбиоз растений (например, бобовых и мимозовых – около 90 % изученных видов) с азотфиксирующими бактериями , способными усваивать атмосферный азот и переводить его в доступную для высших растений форму. Колонии бактерий поселяются на корневых волосках растения-хозяина, вызывая разрастание тканей корня с образованием утолщений – клубеньков. В результате такого «сожительства» бактериям достаются растительные ассимиляты, а к растениям поступает фиксированный азот (чаще всего в виде аспарагина).

Аналогичные симбиотические связи с корнями различных деревьев и кустарников образуют актиномицеты . Симбиоз с азотфиксирующими микроорганизмами дает возможность растениям-партнерам успешно расти в условиях азотного дефицита (например, на торфяниках или песчаных участках).

Срастание корней дает деревьям возможность обмениваться между собой влагой, минеральными и органическими веществами

Часто у близко растущих деревьев (одного вида или близкородственных) наблюдают срастание корней , что дает им возможность обмениваться между собой влагой, минеральными и органическими веществами. Такой своеобразный симбиоз делает их более устойчивыми к засухе, морозу, повреждению насекомыми и т. д.

При отмирании надземных частей у отдельных деревьев их сохранившаяся корневая система используется соседними, что улучшает рост и устойчивость всей группы в целом. После вырубок в таких случаях могут образовываться «живые» пни, у которых длительное время сохраняется камбиальный прирост.

Существенный минус корневого срастания – возможность более легкого распространения токсинов и возбудителей вирусных и грибных заболеваний. Однако для сближенных деревьев такое взаимоинфицирование в любом случае может происходить достаточно быстро.

Срастание корневых систем выявлено у деревьев разных возрастов, причем у представителей как голосеменных, так и покрытосеменных. Наиболее часто это явление отмечают для березы повислой, ясеня зеленого, дуба черешчатого, вяза обыкновенного, клена остролистного, различных хвойных – сосны, ели, лиственницы, пихты. Корневое срастание характерно также для плодовых (груши, яблони, сливы, рябины). Садоводы создают искусственные системы «многокорневых» деревьев за счет прививок корней для улучшения роста и повышения урожайности.

Сотрапезники

В растительных сообществах не менее распространен еще один тип положительных связей – комменсализм (от позднелат. commensalis – «сотрапезник»), когда одни из взаимодействующих партнеров получают пользу от «сожительства», а другим это безразлично. Обычно один из организмов при этом использует соседа в качестве среды обитания и источника питания. Подобные формы взаимоотношений характерны для эпифитов, лиан, почвенных и наземных сапрофитов.

Сапрофитная гнездовка обыкновенная

В наших широтах такая форма сосуществования характерна в основном для мхов, лишайников, некоторых папоротников, водорослей, цветковых. При чрезмерном разрастании они могут способствовать подгниванию тканей хозяина.

Эпифитные мхи

К лианам относят вьющиеся растения со слабыми однолетними или многолетними стеблями. Среди лиан встречаются как деревянистые, так и травянистые формы. Они используют деревья и кустарники в качестве опоры и поднимаются по ним достаточно высоко, используя усики, придаточные корни, колючки. Для лиан характерны длинные и крупные водоносные сосуды, что связано с необходимостью «перекачивать» значительные объемы воды в крону на достаточно большую высоту.

Древесные виды могут развивать мощную крону и отличаются долголетием (например, винограды доживают до 200 лет). Лианы обычно занимают малую площадь на поверхности почвы, многие обладают красивыми цветками и листвой, некоторые плодоносят. Благодаря этим качествам их широко используют как декоративные растения для озеленения в искусственных насаждениях. В наших широтах с умеренным климатом наиболее часто высаживают актинидию, лимонник, различные виды винограда, плющи, хмель.

Сапрофиты живут (частично или полностью) за счет питания органическим веществом отмерших организмов. В основном представлены грибами, бактериями, актиномицетами. Редко встречаются среди цветковых (некоторые представители семейств грушанковых, орхидных), мхов, папоротников. Примером цветковых растений, перешедших на гетеротрофное питание, являются сапрофиты хвойных лесов – подъельник обыкновенный, надбородник безлистый.

Сапрофиты играют важную роль в жизни лесного сообщества, разлагая мертвые растительные остатки и переводя сложные органические соединения в более простые формы, тем самым способствуя повышению плодородия почвы.

Древесные помогают друг другу

Помимо прямых контактных отношений для растений не менее важны опосредованные, косвенные взаимодействия . Наиболее распространенный тип подобных положительных связей – влияние одних растений на другие через улучшение условий их совместного обитания: изменение температурных режимов, влажности воздуха и почвы, направления и скорости ветра, интенсивности освещенности, изменение почвенного состава за счет опада и химических выделений. Такой тип взаимопомощи наиболее характерен для древесных.

Так, примесь бука в сосновых и дубовых культурах на песках и супесях повышает плодородие почв и способствует улучшению роста основной породы. Присутствие лиственницы в дубравах повышает влажность верхних слоев почвы, способствует увеличению количества подвижного фосфора, калия. Кроме того, в северных районах произрастания дуба лиственница предохраняет его от заморозков, не создавая при этом сильного затенения. Еще одним хорошим «другом» для дуба может быть липа . В опаде липы содержится много азота, фосфора, кальция. Быстрое истребление опада дождевыми червями ускоряет переход этих веществ в усвояемую для деревьев форму. Чем ниже плодородие почвы и хуже ее физические свойства, тем значительнее положительный эффект от липы.

Позитивны взаимоотношения дуба и граба , особенно в кальцефильных условиях, где сказывается подкисляющее влияние грабового опада.

Высокой способностью удобрять почву, аккумулируя в лесной подстилке запасы питательных компонентов, обладают также черемуха , береза , бузина , лещина , клен – их опад дает наибольшее количество минеральных веществ.

По признанию энтомологов, в смешанных сосново-березовых древостоях сосна меньше страдает от вредителей (пилильщика, соснового шелкопряда и подкорного клопа), чем в чистых сосняках. По-видимому, это связано с более неблагоприятными условиями перезимовки насекомых в подстилке, состоящей из смеси опада березы и сосны. В чистых сосняках, по сравнению с сосново-лиственными, быстрее распространяется корневая губка.

Наличие подлеска на засушливых участках способствует затенению почвы, защите ее от пересушивания, от чрезмерного задернения и зарастания травами.

Береза в заболоченных местах улучшает условия произрастания соседних пород (например, сосны). Корни березы больше приспособлены к плохим условиям аэрации и могут проникать в более глубокие почвенные горизонты, помогая интенсивно отсасывать избыточную влагу.

Показано, что присутствие азотсобирателей в фитоценозе – белой и желтой акации , черной и серой ольхи , лоха , облепихи и других пород – приводит к увеличению количества азота в почве и способствует более интенсивному развитию соседних деревьев. Типичный случай такого благоприятствования – увеличение в 2–3 раза прироста у тополя , растущего рядом с ольхой . Корни тополя эффективно используют выгодное соседство, проникая в желваки на корнях ольхи и получая дополнительное азотное питание.

Еще один пример – соседство ясеня с ольхой черной и с лиственницей . Ясень является нитро- и фосфорофилом, а ольха и лиственница как раз обогащают почву соответственно азотом и фосфором. Способности азотсобирателей к обогащению почв также широко используют при создании долговечных декоративных насаждений, в лесоводстве и сельскохозяйственной практике.

Нередко взрослые растения одного вида помогают возобновлению и росту молодняка других пород. Так, осину считают деревом-нянькой по отношению к подросту ели . Под более светлой кроной осины возобновление и развитие еловой поросли происходит с меньшими потерями. Кроме того, листья осины разлагаются быстрее, чем листья многих других пород, и хорошо обогащают почву. Наконец, корни ели получают возможность значительно углубляться в почву по ходам, образовавшимся от сгнивших корней осины.

В косвенных положительных взаимоотношениях с древесными растениями нередко участвуют микроорганизмы. Микоризообразование у древесных может способствовать изменению состава почвы и ее кислотности, создавая благоприятные условия для поселения различных бактерий (в частности, PGPRP – от Plant Growth Promotion Rhizosphere Pseudomonas . ), которые питаются выделениями корней и микоризообразующих грибов. В свою очередь бактерии синтезируют соединения с антибиотической активностью, защищая соседей от патогенов.

Все представленные типы положительных связей можно обнаружить в любом растительном сообществе, при этом формы взаимодействия растений очень динамичны и могут меняться в зависимости от этапов их развития, смены условий окружающей среды, при появлении новых партнеров. Один и тот же растительный организм одновременно может находиться в различных (порой совершенно противоположных) отношениях с соседями: с одними – в комменсалистских, с другими – в симбиотических, с третьими – в конкурентных и т. д.

Чем разнообразнее и долговечнее сотрудничество, поддерживающее совместную жизнь растений, тем продуктивнее их сожительство. Обычно со временем отбираются комбинации видов с максимальной взаимной приспособленностью, наиболее соответствующие конкретным условиям обитания. Именно поэтому, как правило, естественные лесные сообщества, имеющие длительную историю постепенного развития, гораздо устойчивее тех, которые создаются человеком (парков, ландшафтных садов, пр.). Формирование жизнеспособных искусственных насаждений наиболее вероятно в тех случаях, когда подбор растений для них максимально приближен к природным сочетаниям с преобладанием взаимопомощи, а не борьбы.

331. Какое приспособительное значение для бактерий имеет процесс образования спор?
А) Способ размножения.
В) Способ питания.
+С) Способ переживания неблагоприятных условий.
D) Способ деления клеток.
Е) Способ распространения.

332. Какие бактерии являются автотрофными?
А) Бактерии молочнокислого брожения.
В) Болезнетворные бактерии.
C) Азотобактерии.
+D) Серобактерии.
Е) Металообразующие бактерии.

334. Для каких бактерий характерно бескислородное дыхание?
+А) Бактерии брожения.
В) Клубеньковые бактерии.
С) Бактерии гниения.
D) Цианобактерий.
Е) Патогенные бактерии.

335. Какие бактерии живут в симбиозе с бобовыми растениями?
A) Бактерии гниения.
В) Серобактерии.
+С) Клубеньковые бактерии.
D) Болезнетворные бактерии.
Е) Маслянокислые бактерии.

336. Благодаря чему бактерии живут в самых неблагоприятных экстремальных условиях существования?
+А) Высокая способность к размножению.
В) Упрощенная организация структуры белка.
С) Примитивное строение тела.
D) Совершенство организации.
Е) Быстрее движение.

337. Как называется тело гриба?
А) Лист.
В) Таллом.
+С) Грибница.
D) Слоевище.
Е) Стебель.

338. Из каких компонентов состоит вегетативное тело гриба?
А) Из нитчатых водорослей.
+В) Из тонких ветвящихся нитей — гифа.
С) Из слоевища.
D) Из отмерших клеток.
Е) Из жгутиков.

341. Какие бактерии превращают перегной почвы в минеральные вещества?
А) Бактерии гниения.
В) Молочнокислые бактерии.
С) Клубеньковые бактерии.
+D) Почвенные бактерии.
Е) Сине-зеленые бактерии.

342. Какие бактерии превращают отмершие организмы в перегной?
+A) Бактерии гниения.
В) Молочнокислые бактерии.
С) Клубеньковые бактерии.
D) Почвенные бактерии.
Е) Синезеленые бактерии.

343. Какой способ питания характерен для грибов?
А) Хемотрофный.
В) Фототрофный.
+С) Гетеротрофный.
D) Автотрофный
Е) Способ заглатывания пищи.

344. У каких грибов споры образуются на плодовом теле?
A) Мукор.
В) Пеницилл.
С) Плесневые.
+D) Шляпочные.
Е) Трутовики.

345. К какой группе относят грибы?
А) Прокариоты.
+В) Эукариоты.
C) Фототрофы.
D) Хемотрофы.
Е) Нет правильного ответа.

347. Какой способ размножения преобладает в жизненном цикле грибов?
+A) Бесполый.
В) Половой,
С) Вегетативный.
D) Гаметами.
Е) С оплодотворением.

348. Какие грибы живут в симбиозе с корнями деревьев?
А) Дрожжи.
B) Спорынья.
С) Трутовик.
+D) Подберезовик.
Е) Белая плесень.

349. Какой организм образуется при симбиозе водорослей и грибов?
А) Бурые водоросли.
+В) Лишайник.
С) Мох.
D) Папоротник.
Е) Зеленые водоросли.

350. Что получает гриб от водорослей в симбиозе, именуемом лишайником?
А) Воду.
+В) Углеводы.
С) Воздух.
D) Минеральные вещества.
Е) Жиры.

351. Что получают водоросли от грибов в симбиозе, именуемом лишайником?
А) Органические вещества.
В) Углеводы.
С) Воздух.
+D) Минеральные вещества, воду.
Е) Жиры

352. Какой способ размножения характерен для лишайника как для единого организма?
+А) Вегетативный.
В) Половой.
С) Бесполый.
D) Гаметами.
Е) Почкованием.

354. У каких из перечисленных организмов в состав клетки входит: ядро, цитоплазма, рибосомы, вакуоли, а клеточная стенка состоит из хитина?
А) Бактерии.
В) Водоросли.
+С) Грибы.
D) Растения.
Е) Вирусы.

355. Где встречаются бактерии?
А) Только в воде.
В) Только в почве.
С) Только в воздухе.
+D) Везде.
Е) На растительных и животных организмах.

356. В каких местах встречается наименьшее количество бактерий?
А) В почве.
В) В воздухе больших городов.
С) В воде.
+D) В воздухе высоко в горах.
Е) В некоторых промышленных помещениях.

357. Некоторые бактерии имеют жгутики, с помощью которых они … (Закончите фразу).
А) Питаются.
В) Размножаются.
+С) Движутся.
D) Ориентируются в пространстве.
Е) Различают свет и темноту.

358. Для какой цели приспособлено образование спор у бактерий?
А) Размножение.
В) Распространение.
С) Накопление запаса питательных веществ.
+D) Выживание в неблагоприятных условиях.
Е) Образование капсул.

Из 13 000 видов (550 родов) бобовых растений клубеньки выявлены пока только у 1300 видов (243 рода). Из этих растений более 200 видов - сельскохозяйственные растения. Благодаря клубенькам бобовые растения приобретают способность усваивать атмосферный азот.

Бактерии, вызывающие образование клубеньков у бобовых (клубеньковые бактерии), принадлежат к роду ризобиум. Эти бактерии свободно живут в почве, но фиксацию молекулярного азота способны осуществлять лишь в симбиозе с растением. Комплекс растение - ризобиум является примером настоящего симбиоза.

Для клубеньковых бактерий характерно поразительное разнообразие форм - полиморфность. Они могут быть палочковидными, овальными, в форме кокков (подвижных и неподвижных). Клубеньковые бактерии - микроаэрофилы (развиваются при незначительном количестве кислорода в среде), однако предпочитают аэробные условия. В качестве источников углерода в питательных средах используют углеводы и органические кислоты, источников азота- разнообразные минеральные и органические азотосодержащие соединения. Клубеньковые бактерии обладают строгой специфичностью.

Существует несколько гипотез о проникновении клубеньковых бактерий в ткани корня: 1) через повреждения эпидермальной и коровой ткани; 2) через корневые волоски; 3) только через молодую клеточную оболочку; 4) благодаря стимуляции синтеза β-индолилуксусной кислоты из триптофана, всегда имеющегося в корневых выделениях растений; 5) благодаря бактериям-спутникам, продуцирующим пектинолитические ферменты.

Процесс внедрения клубеньковых бактерий в ткань корня состоит из двух фаз: 1) инфицирование корневых волосков; 2) процесс образования клубеньков.

В большинстве случаев внедрившаяся клетка, активно размножаясь, образует так называемые инфекционные нити и уже в виде таких нитей перемещается в ткани растения. Клубеньковые бактерии, вышедшие из инфекционной нити, продолжают размножаться в ткани хозяина. Наполняющиеся быстро размножающимися клетками клубеньковых бактерий растительные клетки начинают усиленно делиться. Связь молодого клубенька с корнем бобового растения осуществляется благодаря сосудисто-волокнистым пучкам. В период функционирования клубеньки обычно плотные; К моменту проявления оптимальной активности клубеньки приобретают розовую окраску (благодаря пигменту легоглобину). Фиксировать азот способны лишь те бактерии, которые содержат легоглобин.

Факторы, определяющие симбиотические взаимоотношения клубеньковых бактерий с бобовыми растениями:

1. Влажность - оптимальная влажность 60-70 % полной влагоемкости почвы.

2. Температура - температурные характеристики разных видов бобовых растений различны; предел - от 10 до 25-30 °С. Максимальная азотфиксация у ряда бобовых растений наблюдается при 20-25 °С.

3. Реакция почвы - нейтральные значения рН.

4. Степень обеспеченности бобовых растений доступными формами минеральных соединений азота, фосфора, калия, кальция, магния, серы, железа, микроэлементов.

5. Биологические факторы - ризосферная микрофлора, насекомые.

Корневые клубеньки распространены не только у бобовых растений. Имеется около 200 видов различных растений, связывающих азот в симбиозе с микроорганизмами, образующими клубеньки на их корнях (или листьях). Изучены клубеньки на корнях ольхи, якорцев (из семейства парнолистниковых), вейника лесного. Обнаружены клубеньки на корнях капусты, редьки (семейство крестоцветных). Клубеньки на листьях образуют бактерии филлосферы, которые также участвуют в азотном питании растений.

Нитрагин - бактериальное удобрение, состоящее из нескольких штаммов клубеньковых бактерий.

Источник---

Богданова, Т.Л. Справочник по биологии/ Т.Л. Богданова [и д.р.]. – К.: Наукова думка, 1985.- 585 с.

Симбиотические связи бактерий с бобовыми благодаря широкому использованию их в полевом растениеводстве, луговодстве и, частично, в лесоводстве, изучались весьма интенсивно. Установлено, что не все виды бобовых имеют на корнях клубеньки. При обобщении имеющихся данных, оказалось, что из 1285 изученных бобовых (в широком понимании этой группы) клубеньки отсутствовали у 166 (13,0%), в том числе у 77,4% изученных цезальпиновых, у 13% мимозовых и 7% - мотыльковых (Fabaceae) (E. Allen, O. Allen, 1961).

Отсутствие клубеньков на корнях не всегда означает неспособность данного вида бобовых к симбиозу с клубеньковыми бактериями, иногда это происходит из-за местных условий, неблагоприятных для образований клубеньков, или по тому, что в почве нет соответствующих рас клубеньковых бактерий. В то же время наличие клубеньков на корнях бобовых не всегда указывает на активную фиксацию азота клубеньковыми бактериями. Установлено, что многочисленные мелкие белые клубеньки на боковых корнях травянистых бобовых образованы малоэффективной расой клубеньковых бактерий, неспособной связывать атмосферный азот или фиксирующий его в незначительном количестве, в то время как крупные, окрашенные в розовый цвет клубеньки на стержневом корне обычно характеризуют энергично идущий процесс усвоения азота.

А процесс естественного отбора и сопряженной эволюции возникло много рас клубеньковых бактерий, способных выступать в эффективные симбиотические отношения с определенными видами бобовых. Значение отдельных рас клубеньковых бактерий давно было выяснено для возделываемых видов бобовых, и, в связи с необходимостью в ряде случаев вносить бактериальное удобрение (нитраты), содержащие соответствующие клубеньковые бактерии, они были разделены на ряд групп в соответствии с пригодностью для определенных видов бобовых. Принято выделять следующие расы клубеньковых бактерий по их способности к эффективному симбиозу со следующими определенными видами или группами видов бобовых:

    горох, вика, кормовые бобы;

    фасоль; 3) соя; 4) люпин, сераделла;

5) вигна, магу, арахис; 6) нуж; 7) клевер;

8) люцерна, донник, пажитник; 9) эспарцет;

10) лядвенец (Вознесенская, 1969).

На самом деле число рас клубеньковых бактерий значительно больше.

Выявлена специфичность рас клубеньковых бактерий в пределах уже установленных групп, в частности в "клеверной группе", например у клевера несходного, клубеньки возникают лишь при участии особой расы клубеньковых бактерий.

Эта специфичность проявляется также в значительных различиях фиксируемого ими азота в зависимости от вида клевера, с которым они связаны. В таблице 12 показано, что наиболее эффективные для клеверов лугового и ползучего расы клубеньковых бактерий для клевера подземного были наименее эффективными, и наоборот. Расы, обеспечивающие фиксацию очень значительных количеств азота при инокуляции ими клевера подземного, в симбиозе с клевером луговым и ползучим фиксировали незначительное количество азота. Все это обусловило выделение среди "клеверной группы" трех подгрупп: А - клевера ползучий, луговой, розовый, простертый, зямляничный; В - подземный, инкармантный, скученный, александрийский; С - несходный. Три подгруппы выделяют и среди "люцерновой группы".

Таблица 12.

Способность отдельных рас клубеньковых бактерий фиксировать атмосферный азот при симбиозе с различными видами клевера (содержание азота в мг на 8 растений; по White et al., 1953).

Возможность фиксации атмосферного азота клубеньковыми бактериями и количество фиксированного азота определяются также средой - отсутствием условий, ограничивающих жизнедеятельность бактерий и бобовых растений (высокая кислотность, высокое содержание растворимого алюминия, плохая аэрация и др.), а также достаточной обеспеченностью фосфором, калием, кальцием, молибденом, серой, кобальтом, водой и др. Фиксация азота клубеньковыми бактериями снижается по мере увеличения содержания в почве растворимых форм азота, доступных для бобовых. Большое значение имеют условия освещения, поскольку клубеньковые бактерии получают от бобового углеводы, необходимые им как энергетический материал для фиксации азота, и потому зависят от фотосинтеза. При затенении резко снижается не только число клубеньков, но и их размеры, а также предельная глубина их образования.

Клубеньковые бактерии более экономно используют энергию, необходимую для фиксации азота, затрагивая 3-4 г углеводов на 1 г азота, в то время как свободноживущие азотфиксирующие бактерии затрачивают 50 - 100 и более граммов на фиксацию 1 г азота. Это связано с тем, что у свободноживущих азотфиксаторов фиксация азота происходит в процессе их роста, и потому большое количество энергии потребляется на этот рост. Кроме того, в целях создания благоприятных условий для активности нитрогеназы - фермента, участвующего в фиксации азота, для снижения парциального давления кислорода усиливается дыхание, что связано с затратой энергии. Эти расходы энергии отсутствуют у клубеньковых бактерий. Поскольку фиксация азота происходит в бактероидах, клетках, прекративших рост, а внутри клубеньков создаются благоприятные условия для активности нитрогеназы. В том числе сниженное содержание кислорода. Очень существенно то, что фиксируемый клубеньковыми бактериями азот на 90 - 95% передается бобовым растениям. Бобовые, получая связанный азот от клубеньковых бактерий, не зависят или мало зависят от обеспечения минеральным азотом почвы и потому могут успешно произрастать совместно с другими растениями на почвах, бедных доступными формами азота.

Количество азота, фиксируемого клубеньковыми бактериями бобовых, сильно варьирует от фитоценоза к фитоценозу, а в пределах конкретных фитоценозов может изменяться от года к году. Оно определяется участием бобовых в фитоценозах, условиями среды и эффективностью соответствующих рас бактерий. Для некоторых лугов в Новой Зеландии с травостоями, где преобладает клевер, отмечена фиксация азотом до 450 - 550 кг/га.

Фиксация азота в столь больших количествах возможна лишь в условиях исключительно благоприятного климата Новой Зеландии (равномерное распределение большого количества атмосферных осадков, отсутствие засух, благоприятные тепловые условия, возможность вегетации в течении всего года), когда растения в результате применения известкования и внесения удобрений произрастают в условиях благоприятных для них реакций почвы и обеспечены необходимыми зольными элементами. Однако, даже в Новой Зеландии среднее количество азота, фиксируемого клубеньковыми бактериями бобовых, входящих в состав луговых травостоев, составляло 185 кг/га (колебания достигали 85 - 340 кг/га от луга к лугу и в среднем от года к году 145 - 225 кг/га). В годы с более влажным и прохладным летом оно было выше, а в годы с сухим, более теплым летом - ниже. Данные о сходных количествах фиксируемого азота клубеньковыми бактериями бобовых получены для Ирландии (в среднем 160 кг/га) и Южной Англии (250 - 270 кг/га) и относятся к лугам, созданным путем посева трав. На природных лугах нашей страны, в травостоях которых бобовые принимают меньшее участие, количество азота, фиксируемого клубеньковыми бактериями, как правило, не более 30 - 50 кг/га. В посевах многолетних трав (бобовых или бобовых в смеси со злаками) количество фиксируемого азота обычно не превышает 200 кг/га.

Давно замечено, что бобовые благоприятно влияют на произрастающие совместно с ними злаки и другие растения, в том числе увеличивают содержание азота в их органах. На основе результатов вегетационных опытов Виртанен пришел к выводу, что такое воздействие связано с прижизненными выделениями из корней бобовых в почву значительных количеств азотсодержащих соединений. Проверка результатов опытов Виртанена, проведенная в СССР, Шотландии, США, Австралии, не подтвердила его выводов. Оказалось, что в условиях нормального фотосинтеза бобовые не выделяют в почву сколь-либо заметных количеств азотистых соединений. Лишь с ослаблением фотосинтеза (при сниженной интенсивности освещения), когда растения не располагают достаточным количеством углеводов и органических кислот для связывания всего фиксируемого клубеньковыми бактериями азота, часть его может выделяться в почву. Благоприятное влияние бобовых на другие растения можно объяснить поступлением в почву азота с их отмирающими органами, у древесных растений - в основном с опадом, у травянистых (в фитоценозах, используемых как сенокосы и пастбища) - преимущественно с отмирающими подземными органами. На пастбищах злаки получают азот бобовых из экскрементов скота, поедающих их. Так как бобовые, если фиксация азота клубеньковыми бактериями идет достаточно активно, не поглощают из почвы азот или поглощают его в незначительных количествах, на долю небобовых растений остается больше доступных форм азота, и потому они растут лучше с бобовыми, чем в их отсутствие. Совместное произрастание бобовых с небобовыми растениями оказывает благоприятное влияние на фиксацию азота клубеньковыми бактериями, так как в результате поглощения небобовыми азота из почвы содержание его доступных форм снижается до незначительных величин, что стимулирует фиксацию азота.

Биологическая фиксация азота.

Баланс доступного растениям азота на Земном шаре поддерживается за счет деятельности особой группы организмов - так называемых азотфиксаторов. В экономике природы процессам биологической фиксации азота принадлежит исключительная роль, которая по значению вполне равнозначна процессу фотосинтеза.

В группу азотфиксаторов входят свободно живущие организмы, а также организмы, способные существовать лишь в симбиозе с другими видами.

Первой в ряду свободно живущих азотфиксаторов открыта анаэробная спороносная бактерия Clostridium pasterianum. Это открытие принадлежит русскому ученому С. Н. Виноградскому (1893). Через 8 лет (1901) М. Бейеринком был открыт аэробный микроорганизм, названный азотбактером (Azotobacter).

Оба организма являются сапрофитами. Для восстановления молекулярного азота они используют энергию, получаемую ими при окислении глюкозы и других органических соединений (например, маннита). На каждый грамм сброженной глюкозы азотбактер накапливает около 15 мг связанного азота, тогда как Clostridium - не более 2 -3 мг.

Выделив азотбактер, Бейринк обратил внимание на большое сходство свойств этого микроорганизма со свойствами фотосинтезирующей бактерии Chromatium. В настоящее время установлено, что способность фиксировать азот широко распространена у различных видов бактерий. Эта функция свойственна, в частности, сульфатредуцирующим бактериям, развитие которых осуществляется в анаэробных условиях. Способностью ассимилировать молекулярный азот обладает также пурпурная бактерия Rhodospirillum rubrum (Чест и Камен).

К свободно живущим азотфиксаторам принадлежат также синезеленые водоросли (Nostoc, Phormidium). Осуществляемая ими ассимиляция молекулярного азота имеет в особенности большое значение для пресноводных бассейнов, для развития растений риса на заливаемых водой плантациях и т.п. Благодаря своей крайне четко выраженной автотрофности синезеленые водоросли способны заселять голые скалы; они развиваются на вулканической пыли, пензе и т.д.

Общий уровень азотфиксирующей активности свободно живущих организмов невысок. В зависимости от вида и условий существования они накапливают в год от 10 до 30 - 40 кг связанного азота на гектар.

Основную роль в пополнении убыли запасов связанного азота выполняют бактерии - симбиоты, в первую очередь Bacterium radicicola. В настоящее время известно, что кроме бобовых имеется еще около 100 видов других растений, на корнях которых развиваются специфические для каждого растения клубеньковые бактерии.

Химическая природа взаимодействия бобовых с клубеньковыми бактериями изучена неполно, в связи с чем ряд факторов в этой области не находит еще объяснения. Например, установлено, что клубеньковые бактерии способны восстанавливать молекулярный азот только при взаимодействии с корнями бобовых растений. Этой способности лишены бактерии, культивируемые в искусственных средах. Клубеньковые бактерии развивались на корнях бобовых растений и в том случае, если последние служили подвоем, а привоем - любое другое растение. В тех вариантах, где бобовые служили привоем, а подвоем - различные небобовые растения, бактерии не развивались.

Все это показывает, что тканям бобовых должны быть свойственны определенные особенности.

Представитель экспериментального направления в физиологии растений. Замечательный французский ученый Жан Батист Буссенго первый широко использовал в своих исследованиях по питанию метод выращивания растений в вегетационных сосудах. Точные эксперименты позволили Буссенго опровергнуть представления Либиха об азотном питании растений. Буссенго первый отметил специфические особенности бобовых растений как азотсобирателей, а вслед за тем Гельригель открыл, что эту роль бобовые выполняют в симбиозе с клубеньковыми бактериями. Большое значение имели исследования русского ботаника М. С. Воронина, который первый сформулировал представление о клубеньках как о болезненных образованиях, возникающих в результате заражения корней.

Симбиоз корней высших растений с грибами носят название микориз, симбиозы с бактериями - бактериориз. В зависимости от формы симбиотрофизма различают микоризы экто- и эндотрофные. Первые развиваются на поверхности корней, вторые проникают внутрь ткани. Классическим примером бактериотрофизма является взаимодействие бобовых растений с клубеньковыми бактериями.

Исследования микробиологов, проведенные в последние годы, значительно расширили представления о значении симбиотрофизма в процессах корневого питания растений.

Число микробных телец, приходящихся на 1 г почвы, исчисляется многими сотнями миллионов и даже миллиардами. Некоторое представление об этом дают цифры, заимствованные из работ Н. А. Красильникова:

Почвенные микроорганизмы сосредоточены в основном в зоне размещения корней.

Важное значение азотфиксирующих бактерий диктует необходимость обеспечения наиболее благоприятных условий для их развития и физиологической деятельности.

Один из путей решения этой важной практической задачи состоит в увеличекнии численности микробного населения почвы с помощью бактериальных удобрений.

Данное мероприятие в равной степени оправдывает себя в отношении как клубеньковых бактерий, так и свободно живущих азотфиксаторов.

Дело в том, что даже при длительной культуре бобовых растений, почвы, занятые ими содержат нередко недостаточное количество Bact. radicicola, в результате чего на корнях образуется мало клубеньков, либо они не образуются вовсе. В этих условиях бобовые не обогащают почву азотом, а аналогично другим растениям истощают имеющиеся в ней азотистые соединения.

Искусственное обогащение почвы клубеньковыми бактериями оказывает весьма благоприятное влияние на азотный баланс почвы и на развитие бобовых и других растений севооборота. Препарат клубеньковых бактерий, который называется нитрагином, вносят вместе с семенами бобовых при посеве. При приготовлении нитрагина следует учитывать специфичность клубеньковых бактерий.