Цикл карно энтропия второе начало термодинамики. Второе начало термодинамики

Равновесное состояние термодинамической системы определяется постоянством значений макроскопических величин, характеризующих это состояние. Обратимым называют такой термодинамический процесс А→B, который, будучи проведен в обратном направлении, возвращает систему в исходное состояние, проходя через те же промежуточные состояния в обратной последовательности, а состояние тел вне термодинамической системы остались неизменными. P А Обратимый В V А В Квазистатический – процесс, в ходе которого система все время остается в состоянии равновесия. Круговой D C

Цикл Карно Садди Карно 1796 -1832 Франция. Тело отдает тепло→ знак изменится на “-” η- всех обратимых систем, работающих в идентичных условиях одинаков и определяется только температурами нагревателя и холодильника. T 1 4 2 3 S

При необратимом адиабатическом процессе энтропия возрастает η-любой необратимой машины всегда меньше, чем η обратимой, работающей в тех же условиях. Тепловая машина. 1 2 4 3

Предвестники 2 -ого начала термодинамики. Нельзя ли построить периодически действующую тепловую машину без холодильника? . Q 2=0 => такая машина превращала бы в работу всю теплоту, заимствованную от нагревателя. Закон сохранения энергии здесь не нарушается. Тогда представляется возможность создания вечного двигателя 2 -го рода (перпетуум мобиле 2 -го рода) => Заимствуем тепло из «неограниченного» (из океана, атмосферы, недров Земли) источника и превращаем его в работу. … тепло и вечный двигатель => Вильгельм Оствальд (1853 -1932 гг.)

Возможность совершения работы тепловыми двигателями обусловлена переходом тепла от тела более нагретому к телу менее нагретому.

Энтропия, а для -приведенная теплота, является Но отношение функцией состояния системы - энтропия, где S- параметр состояния(как и P, V, T) В замкнутой или изолированной системе при протекании любого обратимого процесса энтропия остается неизменной

При протекании в замкнутой термодинамической системе необратимого процесса, энтропия системы возрастает, достигая своего максимума в состоянии равновесия системы. Если, то какие либо изменения в системе без внешнего воздействия невозможны. - для обратимого процесса - для необратимого процесса Энтропия-мера отклонения реального процесса от идеального.

I-начало: II-начало: В замкнутой или изолированной системе при протекании необратим процесса энтропия системы возрастает, достигая своего максимума в состоянии равновесия системы. Если система находится в состоянии равновесия то какие либо изменения в системе без внешнего воздействия невозможны. Энтропия замкнутой системы может только возрастать. 1. Устанавливает наличие в природе фундаментальной асимметрии – однонаправленность всех самопроизвольно происходящих в природе процессов. 2. Количество энергии в замкнутых системах сохраняется, но распределение энергии меняется необратимым образом. III-начало: Если Т→ 0, то S→ 0, т. е. невозможно охладить вещество до температуры абсолютного нуля.

- МАЛО! У реальных

2. Клаузиус (1822 – 1888) в 1850 “ Теплота не может самопроизвольно переходить от тела менее нагретого к телу более нагретому. ” Вообще “она” возможна. Но она невозможна при условии, что во всех остальных телах не произошло никаких изменений. Холодильник, но процесс не самопроизвольный, а сопровождается работой электрического мотора. 3. т. Нернста: энтропия любого тела стремится к нулю при Т → 0 Обратимый процесс - процесс, при котором система переходит из состояния А в В и возможно вернуть ее хотя бы одним способом в исходное состояние А и при том так, чтобы во всех остальных телах не произошло никаких изменений.

Второе начало термодинамики. Направление термодинамических процессов в изолированной системе → к состояниям, вероятность которых максимальна: --Теплопередача => выравнивание температур. --Диффузия => однородный газ не может собраться в одной половинке сосуда. Энтропия. Статистический вес - число различных микросостояний, посредством которых осуществляется данное макросостояние w; Все макросостояния равновесны => вероятность макросостояния пропорциональна его статистическому весу. – энтропия – характеризует вероятность состояния термодинамической системы.

Невозможность вечного двигателя 2 -ого рода. Молекулы сами собрались в ½ части сосуда и, затем, за счет подводимого тепла изотермически расширяясь совершают работу: Вроде бы все хорошо, если бы молекулы действительно циклически собирались самопроизвольно в ½ части объема сосуда. А вот у тепловой машины энтропия возрастает! но т. к. , то

Связь энтропии с вероятностью. Всякий процесс в природе протекает так, что система переходит в состояние, вероятность которого больше. Если система находится в состоянии с данной энтропией, то с подавляющей вероятностью следует ожидать, что она перейдет в состояние с большей энтропией, т. е. что наиболее вероятным изменением энтропии является ее возрастание. Но возможны и процессы с уменьшением энтропии – флуктуации ω в среднем росте.

§6 Энтропия

Обычно всякий процесс, при котором система переходит из одного состояния в другое, протекает таким образом, что нельзя провести этот процесс в обратном направлении так, чтобы система проходила через те же промежуточные состояния, и при этом в окружающих телах не произошли какие-либо изменения. Это связано с тем, что в процессе часть энергии рассеивается, например, за счет трения, излучения и т. п. Т. о. практически все процессы в природе необратимы. В любом процессе часть энергии теряется. Для характеристики рассеяния энергии вводится понятие энтропии. (Величина энтропии характеризует тепловое состояние системы и определяет вероятность осуществления данного состояния тела. Чем более вероятно данное состояния, тем больше энтропия.) Все естественные процессы сопровождаются ростом энтропии. Энтропия остается постоянной только в случае идеализированного обратимого процесса, происходящего в замкнутой системе, то есть в системе, в которой не происходит обмен энергией с внешними по отношению к этой системе телами.

Энтропия и ее термодинамический смысл:

Энтропия - это такая функция состояния системы, бесконечно малое изменение которой в обратимом процессе равно отношению бесконечно малого количества теплоты, введенного в этом процессе, к температуре, при которой оно вводилось.

В конечном обратимом процессе изменения энтропии может быть подсчитано по формуле:

где интеграл берется от начального состояния 1 системы до конечного состояния 2.

Поскольку энтропия есть функция состояния, то свойством интеграла является его независимость от формы контура (пути), по которому он вычисляется, следовательно, интеграл определяется только начальным и конечным состояниям системы.

  • В любом обратимом процессе изменения энтропии равно 0

(1)

  • В термодинамике доказывается, что S системы совершающей необратимой цикл возрастает

Δ S > 0 (2)

Выражения (1) и (2) относятся только к замкнутым системам, если же система обменивается теплотой с внешней средой, то её S может вести себя любым образом.

Соотношения (1) и(2) можно представить в виде неравенства Клаузиуса

Δ S ≥ 0

т.е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов) либо оставаться постоянной (в случае обратимых процессов).

Если система совершает равновесный переход из состояния 1 в состояния 2, то изменения энтропии

где dU и δA записывается для конкретного процесса. По этой формуле Δ S определяется с точностью до аддитивной постоянной. Физический смысл имеет не сама энтропия, а разность энтропий. Найдем изменение энтропии в процессах идеального газа.

т.е. изменения энтропии S Δ S 1→2 идеального газа при переходе его из состояния 1 в состояния 2 не зависит от вида процесса.

Т.к. для адиабатического процесса δ Q = 0, то Δ S = 0 => S = const , то есть адиабатический обратимый процесс протекает при постоянной энтропии. Поэтому его называют изоэнтропийным.

При изотермическом процессе (T = const ; T 1 = T 2 : )

При изохорном процессе (V = const ; V 1 = V 2 ; )

Энтропия обладает свойством аддитивности: энтропия системы равна сумме энтропий тел входящих в систему. S = S 1 + S 2 + S 3 + ... Качественным отличием теплового движения молекул от других форм движения является его хаотичность, беспорядочность. Поэтому для характеристики теплового движения необходимо ввести количественную меру степени молекулярного беспорядка. Если рассмотреть какое-либо данное макроскопическое состояния тела с определенными средними значениями параметров, то оно есть нечто иное, как непрерывная смена близких микросостояний, отличающихся друг от друга распределением молекул в разных частях объема и распределяемой энергией между молекулами. Число этих непрерывно сменяющих друг друга микросостояний характеризует степень беспорядочности макроскопического состояния всей системы, w называется термодинамической вероятностью данного микросостояния. Термодинамическая вероятность w состояния системы — это число способов, которыми может быть реализовано данное состояния макроскопической системы, или число микросостояний, осуществляющих данное микросостояния (w ≥ 1, а математическая вероятность ≤ 1 ).

За меру неожиданности события условились принимать логарифм его вероятности, взятый со знаком минус: неожиданность состояния равна = -

Согласно Больцману, энтропия S системы и термодинамическая вероятность связаны между собой следующим образом:

где - постоянная Больцмана (). Таким образом, энтропия определяется логарифмом числа состояния, с помощью которых может быть реализовано данное микросостояние. Энтропия может рассматриваться как мера вероятности состояния т/д системы. Формула Больцмана позволяет дать энтропии следующее статистическое толкования. Энтропия является мерой неупорядоченности системы. В самом деле, чем больше число микросостояний реализующих данное микросостояние, тем больше энтропия. В состоянии равновесия системы - наиболее вероятного состояния системы - число микросостояний максимально, при этом максимальна и энтропия.

Т.к. реальные процессы необратимы, то можно утверждать, что все процессы в замкнутой системе ведут к увеличению ее энтропии - принцип возрастания энтропии. При статистическом толковании энтропии это означает, что процессы в замкнутой системе идут в направлении увеличения числа микросостояний, иными словами, от менее вероятных состояний к более вероятным, до тех пор, пока вероятность состояния не станет максимальной.

§7 Второе начало термодинамики

Первое начало термодинамики, выражая закон сохранения энергии и превращения энергии, не позволяет установить направление протекания т/д процессов. Кроме того, можно представить множество процессов, не противоречащих I началу т/д, в которых энергия сохраняется, а в природе они не осуществляются. Возможные формулировки второго начало т/д:

1) закон возрастания энтропии замкнутой системы при необратимых процессах: любой необратимой процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает Δ S ≥ 0 (необратимый процесс) 2) Δ S ≥ 0 (S = 0 при обратимом и Δ S ≥ 0 при необратимом процессе)

В процессах, происходящих в замкнутой системе, энтропия не убывает.

2) Из формулы Больцмана S = , следовательно, возрастание энтропии означает переход системы из менее вероятного состояния в более вероятное.

3) По Кельвину: не возможен круговой процесс, единственным результатом которого является превращения теплоты, полученной от нагревателя в эквивалентную ей работу.

4) По Клаузиусу: не возможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому.

Для описания т/д систем при 0 К используют теорему Нернста-Планка (третье начало т/д): энтропия всех тел в состоянии равновесия стремится к нулю по мере приближения температуры к 0 К

Из теоремы Нернста-Планка следует, что C p = C v = 0 при 0 К

§8 Тепловые и холодильные машины.

Цикл Карно и его к.п.д.

Из формулировки второго начала т/д по Кельвину следует, что вечный двигатель второго рода невозможен. (Вечный двигатель - это периодически действующий двигатель, совершающий работу за счет охлаждения одного источника теплоты.)

Термостат - это т/д система, которая может обмениваться теплотой с телами без изменения температуры.

Принцип действия теплового двигателя: от термостата с температурой Т 1 - нагревателя, за цикл отнимается количество теплоты Q 1 , а термостату с температурой Т 2 (Т 2 < Т 1) -холодильнику, за цикл передается количество теплоты Q 2 , при этом совершается работа А = Q 1 - Q 2

Круговым процессом или циклом называется процесс, при котором система, пройдя через ряд состояний, возвращается в исходное. На диаграмме состояний цикл изображается замкнутой кривой. Цикл, совершаемый идеальным газом, можно разбить на процессы расширения (1-2) и сжатия (2-1), работа расширения положительна А 1-2 > 0, т.к. V 2 > V 1 , работа сжатия отрицательна А 1-2 < 0, т.к. V 2 < V 1 . Следовательно, работа совершаемая газом за цикл, определяется площадью, охватываемой замкнутой кривой 1-2-1. Если за цикл совершается положительная работа (цикл по часовой стрелке), то цикл называется прямым, если - обратный цикл (цикл происходит в направлении против часовой стрелки).

Прямой цикл используется в тепловых двигателях - периодически действующих двигателях, совершающих работу за счет полученной извне теплоты. Обратный цикл используется в холодильных машинах - периодически действующих установках, в которых за счет работы внешних сил теплота переносится к телу с более высокой температурой.

В результате кругового процесса система возвращается в исходное состояние и, следовательно, полное изменение внутренней энергии равно нулю. Тогда І начало т/д для кругового процесса

Q = Δ U + A = A ,

Т. е. работа, совершаемая за цикл равна количеству полученной извне теплоты, но

Q = Q 1 - Q 2

Q 1 - количество теплоты, полученное системой,

Q 2 - количество теплоты, отданное системой.

Термический к.п.д. для кругового процесса равен отношению работы, совершенной системой, к количеству теплоты, подведенному к системе:

Чтобы η = 1, должно выполняться условие Q 2 = 0, т.е. тепловой двигатель должен иметь один источник теплоты Q 1 , но это противоречит второму началу т/д.

Процесс обратный происходящему в тепловом двигателе, используется в холодильной машине.

От термостата с температурой Т 2 отнимается количество теплоты Q 2 и передается термостату с температурой T 1 , количество теплоты Q 1 .

Q = Q 2 - Q 1 < 0, следовательно A < 0.

Без совершения работы нельзя отбирать теплоту от менее нагретого тела и отдавать ее более нагретому.

Основываясь на втором начале т/д, Карно вывел теорему.

Теорема Карно: из всех периодически действующих тепловых машин, имеющих одинаковые температуры нагревателей (Т 1) и холодильников (Т 2), наибольшим к.п.д. обладают обратимые машины. К.П.Д. обратимых машин при равных Т 1 и Т 2 равны и не зависят от природы рабочего тела.

Рабочее тело - тело, совершающее круговой процесс и обменивающиеся энергией с другими телами.

Цикл Карно - обратимый наиболее экономичный цикл, состоящий из 2-х изотерм и 2-х адиабат.

1-2-изотермическое расширения при Т 1 нагревателя; к газу подводится теплота Q 1 и совершается работа

2-3 - адиабат. расширение, газ совершает работу A 2-3 >0 над внешними телами.

3-4-изотермическое сжатие при Т 2 холодильника; отбирается теплота Q 2 и совершается работа ;

4-1-адиабатическое сжатие, над газом совершается работа A 4-1 <0 внешними телами.

При изотермическом процессе U = const , поэтому Q 1 = A 12

1

При адиабатическом расширении Q 2-3 = 0, и работа газа A 23 совершается за счет внутренней энергии A 23 = - U

Количество теплоты Q 2 , отданное газом холодильнику при изотермическом сжатии равно работе сжатия А 3-4

2

Работа адиабатического сжатия

Работа, совершаемая в результате кругового процесса

A = A 12 + A 23 + A 34 + A 41 = Q 1 + A 23 - Q 2 - A 23 = Q 1 - Q 2

и равна площади кривой 1-2-3-4-1.

Термический к.п.д. цикла Карно

Из уравнения адиабаты для процессов 2-3 и 3-4 получим

Тогда

т.е. к.п.д. цикла Карно определяется только температурами нагревателя и холодильника. Для увеличения к.п.д. нужно увеличивать разность Т 1 - Т 2 .

******************************************************* ******************************************************

Лекции по физике. Молекулярная физика и основы термодинамики Второе начало термодинамики. Тепловые двигатели. Энтропия. Цикл Карно Обратимые и необратимые процессы Обратимым называют процесс, допускающий возможность возвращения системы в первоначальное состояние без того, чтобы в окружающей среде остались какие-либо изменения Обратимым может быть лишь равновесный процесс, но не всякий равновесный процесс обратим 2 Обратимые и необратимые процессы Пример. Рассмотрим систему из газа, находящегося в цилиндре под поршнем, на котором установлен груз Уберём груз. Газ расширится. Чтобы вернуть газ в исходное положение надо поднять груз на высоту h, совершив работу A=Mgh, и положить его на поршень Процесс не обратимый М М М М h 3 Обратимые и необратимые процессы Разобьём груз на две равных части Теперь, чтобы расширить и сжать газ в исходное состояние, надо затратить работу A=Mgh/2 Если мы будем производить перемещение поршня на бесконечно малые расстояния, то получим обратимый процесс М/2 h М/2 М/2 М/2 М/2 М/2 М/2 4 Обратимые и необратимые процессы Пример равновесного необратимого процесса – теплообмен Компенсацией за осуществление необратимых круговых процессов является перевод энергии из одной формы в другую. В этом проявляется неэквивалентность различных форм энергии Тепловая энергия оказывается менее ценным видом энергии, чем другие 5 Второе начало термодинамики Второе начало термодинамики констатирует неэквивалентность различных видов энергии. Оно постулирует направление протекания тепловых процессов Формулировка Клаузиуса: Теплота не может самопроизвольно переходить от тела менее нагретого к более нагретому 6 Второе начало термодинамики Формулировка Томсона. Невозможен круговой процесс, единственным результатом которого было бы совершение работы за счёт охлаждения теплового резервуара Устройство, которое позволяло бы осуществлять этот процесс, называется вечным двигателем второго рода 7 Второе начало термодинамики Второе начало Т.Д. накладывает запрет на вечный двигатель второго рода Из второго начала Т.Д. можно получить множество конкретных результатов с помощью метода циклов и метода термодинамических функций 8 Тепловые двигатели Тепловой двигатель – это устройство, в котором совершается циклический Т.Д. процесс В любом тепловом двигателе тепло передаётся от нагревателя к рабочему телу, а затем к холодильнику. При этом совершается полезная работа Нагреватель Q1 Рабочее тело Q2 Холодильник A 9 Тепловые двигатели 10 Метод циклов В циклическом процессе U=0 Q=A=Q1-Q2 При переходе 12 работа совершается системой, а при переходе 21 над системой При переходе 1"2‘ тепло передаётся системе, а при переходе 2"1" от системы КПД теплового двигателя =A/Q1=(Q1-Q2)/Q1 P Адиабаты Q1 2" 1 1" Q2 2 V 11 Цикл Карно Цикл Карно состоит из двух изотерм и двух адиабат Теплоёмкости в адиабатическом и изотермическом процессах не зависят от рабочего тела, поэтому их рассмотрение позволяет выявить ряд общих закономерностей P Адиабаты Изотермы Q1 Т1 Q2 Т2 V 12 Цикл Карно Первая теорема Карно: Коэффициент полезного действия тепловой машины, работающей по циклу Карно, зависит только от температур нагревателя и холодильника и не зависит от устройства машины и типа рабочего тела 13 Цикл Карно Для идеального газа: Q1=RT1ln(V2/V1) Q2=RT2ln(V4/V3) A=Q1-Q2=RT1ln(V2/V1)RT2ln(V3/V4) =A/Q1=/RT1ln(V2/V1) Из уравнения адиабаты: TV-1=const P V1 Q1 Т1 V2 Q2 V4 Т2 V3 V 14 Цикл Карно T1V1-1= T2V4-1 и T1V2-1= T2V3-1 V2/V1=V3/V4 =(T1-T2)/T1=1-T2/T1 Для повышения КПД надо повышать температуру нагревателя и понижать температуру холодильника =(Q1-Q2)Q1=(T1-T2)/T1 Q1/T1=Q2/T2 Величина Q/T называется приведённой теплотой 15 Цикл Карно Вторая теорема Карно: КПД любого цикла не может быть больше, чем КПД цикла Карно - =1Т2/Т1, где под Т1 понимается максимальная, а под Т2 минимальная температура P V 16 Энтропия Рассмотрим произвольный равновесный цикл. Аппроксимируем его малыми циклами Карно Для каждого цикла К можно записать: Q1i/T1i-Q2i/T2i=0 Просуммировав по всем циклам получим: Qk/Tk=0 Т.о. получаем, что dQ/T – дифференциал некоторой Т.Д. функции Назовём эту функцию энтропией P V 17 Энтропия Энтропия – это такая функция состояния, дифференциал которой связан с элементарным тепловым эффектом в обратимом процессе соотношением: dQ=TdS () Энтропия S имеет размерность теплоёмкости С учётом () первое начало Т.Д. можно выразить как: TdS=dU+PdV Отсюда, зная термическое и калорическое уравнения, состояния можно найти зависимость энтропии от Т.Д. параметров 18 Энтропия Найдём энтропию идеального газа Из dU=cVdT и P/T=R/V следует что: dS=cVdT/T+RdV/V S(T,V)=cVlnT+RlnV при cV=const Можно S выразить через T и P: S(T,P)=cPlnT-RlnP 19 Энтропия Определение энтропии через теплоту встречает одну трудность. В точке Т=0 интеграл dQ/T может расходиться Эта неопределённость устраняется постулатом Нернста, называемым иногда третьим началом термодинамики 20 Постулат Нернста Постулат Нернста сводится к двум утверждениям: 1. 2. При приближении к абсолютному нулю энтропия стремится к определённому конечному пределу. Можно положить S(Т=0)=0 Все равновесные процессы при Т=0 происходят без изменения энтропии. В частности, при Т=0 S не зависит от объёма 21 Статистическая интерпретация энтропии Вероятность состояния пропорциональна его статистическому весу Ω, т.е. числу микроскопических способов, которым может быть осуществлено данное макросостояние Разобьём некоторую Т.Д. систему на две подсистемы, которые находятся в состояниях со стат. весами Ω1 и Ω2 Число способов, которыми может реализоваться данное состояние системы: Ω=Ω1Ω2 22 Статистическая интерпретация энтропии Т.о. логарифм стат. веса является аддитивной функцией состояния системы: lnΩ=lnΩ1+lnΩ2 Энтропия системы: S=klnΩ () где k – постоянная Больцмана Формула () называется формулой Больцмана 23 Статистическая интерпретация энтропии Т.к. равновесным состоянием является состояние с наибольшим стат. весом (и наибольшей энтропией), то можно заключить, что при протекании необратимых процессов энтропия изолированной системы возрастает Энтропия системы, находящейся в равновесном состоянии, максимальна 24 Статистическая интерпретация энтропии При протекании обратимых процессов энтропия изолированной системы остаётся постоянной Энтропия равновесной системы не остаётся строго постоянной она претерпевает флуктуации Второй закон термодинамики, иногда называемый законом возрастания энтропии, утверждает, что энтропия изолированной системы может только возрастать либо оставаться неизменной: S≥0 25 26

Лекция 13 .

Тепловые и холодильные машины. Второе начало термодинамики. Цикл Карно. Теорема Карно. Термодинамическая шкала температур. Неравенство Клаузиуса. Термодинамическая энтропия. Закон возрастания энтропии. Третье начало термодинамики.

Тепловые машины или тепловые двигатели , предназначены для получения полезной работы за счет теплоты, выделяемой вследствие химических реакций (сгорания топлива), ядерных превращений или по другим причинам. Для функционирования тепловой машины обязательно необходимы следующие составляющие: нагреватель, холодильник и рабочее тело .

Х олодильником может являться, например, окружающая среда.

В дальнейшем будет применяться понятие термостата , под которым подразумевается тело, находящееся при постоянной температуре и обладающее бесконечной теплоёмкостью – любые процессы получения или отдачи теплоты не меняют температуру этого тела.

Циклический (круговой) термодинамический процесс.

Рассмотрим циклический процесс, в котором нагреватель передает рабочему телу теплоту Q Н . Рабочее тело совершает работу и затем отдаёт тепло холодильнику Q Х .

Замечание . Наличие штриха означает. что берётся абсолютное значение указанной величины, т.е. Q Х = Q Х .

Такой круговой процесс называется прямым . В прямом процессе теплота забирается у более нагретого тела и после совершения системой работы над внешними телами остаток теплоты отдаётся менее нагретому телу. Тепловые машины работают по прямому циклу.

Процесс, в котором теплота забирается у менее нагретого тела и отдаётся более нагретому телу в результате совершения работы над системой внешними телами, называется обратным. По обратному циклу работают холодильные машины .

Теплота, полученная системой, считается положительной Q Н > 0 , а отданная – отрицательной Q Х < 0 . Если Q Х > 0 – теплота, полученная холодильником , то можно записать:

Q Х = Q Х = Q Х .

Внутренняя энергия – это функция состояния, поэтому при круговом (циклическом) процессе, когда система возвращается в исходное состояние, внутренняя энергия не изменяется. Из первого начала термодинамики следует:

Но так как
, то

так как
,
.

Коэффициент полезного действия (термический кпд) прямого цикла:

определяется для циклических (повторяемых) процессов. (Для нециклического процесса подобное отношение называется полезным выходом .)

Замечание . Передача теплоты холодильнику является обязательной для циклического процесса. Иначе рабочее тело придёт в тепловое равновесие с нагревателем, и передача теплоты от нагревателя будет невозможной. Поэтому КПД любой тепловой машины всегда меньше единицы:

.

В холодильной машине внешние тела совершают работу А внеш по отводу теплоты Q 2 от охлаждаемого тела и передаче теплоты Q 1 тепловому резервуару (обычно – это окружающая среда). КПД холодильной машины или холодильный коэффициент – это отношение отведённого количества теплоты к затраченной работе:

.

Вообще говоря, этот коэффициент может быть как меньше единицы, так и больше единицы – всё зависит от работы внешних тел.

Тепловой насос - устройство, «перекачивающее» теплоту от холодных тел к нагретым и предназначенное, например, для обогрева помещения. При этом теплота отбирается у окружающей среды, имеющей меньшую температуру, и воздуху в помещении отдаётся теплота . Тепловой насос работает по обратному тепловому циклу. (Этот принцип обогрева называется динамическим отоплением). КПД теплового насоса равен отношению теплоты, переданной помещению, к затраченной работе:

.

Так как теплота, отводимая от окружающей среды больше нуля, то КПД теплового насоса больше единицы. Но для КПД этого же прямого цикла
,
, поэтому

,

т.е. КПД теплового насоса равен обратной величине КПД прямого цикла .

Пусть в результате некоторого процесса система (ТДС) переходит из состояния 1 в состояние 2. Все процессы перехода системы можно разделить на два вида: 1) обратимые 2) и необратимые процессы.

Процесс 1→2 называется обратимым, если можно осуществить обратный переход 2→1 через те же промежуточные состояния в исходное состояние таким образом, чтобы состояние системы и тел вне системы осталось неизменным.

Процесс 1→2 называется необратимым, если после обратного процесса 2→1 в окружающих систему телах, либо в самой системе произошли какие-то изменения.

Отсутствие изменений в окружающей систему среде, является важной особенностью обратимого процесса. Если в ходе обратимого процесса система выполнила работу A за счет количества теплоты Q , полученного от окружающих ее тел, то при возвращении в первоначальное состояние, она должна отдать окружающим телам такое же количество теплоты Q и над ней должна быть выполнена такая же работа A .

Любой процесс, сопровождающийся трением, является необратимым, потому что в результате трения часть механической энергии переходит в теплоту, которая идет на нагревание трущихся тел. Это тепло рассеивается в окружающей среде и трущиеся, тела не могут сами по себе отдать это тепло в обратном процессе перехода.

Если силы трения очень малы, то процессы могут быть весьма близкими к обратимым. Например, колебания тяжелого маятника, удар стального шарика о массивную стальную плиту.

Необратимыми являются процессы, сопровождающиеся явлением теплопередачи, потому что переход теплоты от холодного тела к горячему не может происходить самопроизвольно. Для осуществления таких процессов требуется работа со стороны внешних тел, что приводит к изменениям в их состоянии, при этом утрачивается условие обратимости.

Необратимым является также процесс расширения газа в пустоту. При этом газ не испытывает сопротивления и не выполняет работу. Однако собрать газ обратно в сосуд без выполнения работы внешними телами невозможно.

Очевидно, что обратимыми могут быть только равновесные (квазистатические) процессы. При протекании равновесных процессов каждое промежуточное состояние является равновесным (состояние термодинамического равновесия) и, поэтому процесс может протекать в обратном направлении так, что в окружающих систему телах не останется никаких изменений. Обратимыми можно считать все изопроцессы.

I начало термодинамики устанавливает количественные соотношения между теплотой, работой и изменением внутренней энергии. Однако оно не указывает направление протекания процессов и не отвечает на вопрос о возможности протекания того либо иного процесса.

Согласно первому началу термодинамики в изолированной системе возможен процесс самопроизвольного перехода теплоты от холодного тела к горячему, главное чтобы при этом выполнялось равенство:

где Q 1 – количество теплоты, отданное первым телом, Q 2 – количество теплоты, полученное вторым телом.

Однако многочисленные опыты показывают, что теплота самопроизвольно переходит от горячего тела к холодному и никогда самопроизвольно наоборот.

Существует множество процессов в природе, которые самопроизвольно протекают только в строго определенном направлении: диффузия, расширение газа в пустоту, остывание нагретого тела и т.д.

I начало термодинамики не запрещает протекание этих процессов в обратном направлении, главное, чтобы при этом, не нарушался закон сохранения энергии .

Ответ на вопрос о возможности протекания того или иного процесса, о направлении протекания процессов дает второе начало термодинамики. II начало термодинамики, как и I начало, является обобщением многочисленных опытов.

II начало термодинамики – фундаментальный закон природы. Он охватывает все явления, которые связаны с обменом энергией и имеет глубокие практические и философские следствия.

Клаузиус: 1) Теплота не может сама собой перейти от менее нагретого тела к более нагретому . 2) Энтропия любой изолированной системы стремится к максимуму .

Кельвин (Томсон): Нельзя построить тепловую машину, которая превращала бы в работу теплоту наиболее холодного тела в системе .

Планк: Нельзя построить периодически действующую машину, единственным результатом работы которой было бы превращение теплоты в работу (важно периодически , т.к. при изотермическом процессе ΔU 12 = 0 и Q 12 = A 12 , но это будет однократный процесс).

Оствальд: Невозможно построить вечный двигатель второго рода .

Карно: Коэффициент полезного действия (КПД) идеальной тепловой машины не зависит от рода рабочего тела и определяется только температурами теплоотдатчика и теплоприемника .

Процессы, не противоречащие первому закону термодинамики, но запрещаемые вторым законом: 1 – «вечный двигатель второго рода»; 2 – самопроизвольный переход тепла от холодного тела к более теплому («идеальная холодильная машина»).

Практически все формулировки II начала термодинамики касаются тепловой машины. Рассмотрим принцип ее действия.

Процесс, при котором ТДС после ряда изменений состояния возвращается в первоначальное состояние, называется круговым процессом или циклом .

Тепловая машина это устройство , многократно выполняющее какой-либо круговой процесс и преобразующее теплоту в работу .

Работа, которая выполняется при круговом процессе, численно равна площади, охватываемой кривой, описывающей этот цикл (рис.1).

Рис.1. Термодинамический цикл тепловой машины

Эта работа положительная при прямом цикле 1a 2b 1 и отрицательная при обратном цикле 1b 2a 1. Любая тепловая машина независимо от ее конструкции состоит из трех основных частей: нагреватель, рабочее тело, холодильник.

Принцип действия тепловых машин заключается в следующем. Нагреватель передает рабочему телу теплоту, вызывая повышение его температуры. Рабочее тело совершает работу над каким-либо механическим устройством, например, приводит во вращение турбину или перемещает поршень в цилиндре и далее отдает холодильнику теплоту, возвращаясь в исходное состояние.

Машина, в которой рабочим телом служит идеальный газ, называется идеальной тепловой машиной. Тепловые машины могут работать по прямому или обратному циклу.

Рассмотрим схему машины, работающей по прямому циклу рис.2.

Рис.2. Энергетическая схема тепловой машины: 1 – нагреватель; 2 – холодильник; 3 – рабочее тело, совершающее круговой процесс.

Рабочее тело получает от нагревателя количество теплоты Q 1 . При этом оно расширяется по кривой 1a 2 (рис.1) и выполняет работу A . Чтобы цикл замкнулся рабочее тело необходимо перевести в первоначальное состояние 1. Для этого его надо сжать. Для сжатия необходимо совершить над рабочим телом работу. Для того чтобы работа, выполняемая при сжатии, была меньше, чем работа, выполненная при расширении, сжатие необходимо вести по кривой 2b 1. Следовательно, сжатие надо вести при более низкой температуре, чем температура нагревателя T 1 . Поэтому необходимо отнять у рабочего тела часть тепла Q 2 и передать ее холодильнику. В результате кругового процесса изменение внутренней энергии рабочего тела будет равно нулю:

Тогда согласно I началу термодинамики работа, совершенная рабочим телом за цикл равна разности подведенной и отведенной теплоты:

(1)

Экономичность работы тепловых машин характеризуется коэффициентом полезного действия КПД , который показывает, какая часть полученной теплоты преобразовалась в работу. КПД равен отношению работы A , выполненной за цикл к количеству теплоты, полученной машиной за цикл:

(2)

Рассмотрим работу тепловой машины по обратному циклу

Рис.3. Схема работы холодильной машины.

В этом случае рабочее тело расширяется вдоль кривой 1b 2, при этом выполняется положительная работа A 1 b 2 численно равная площади под кривой 1b 2. При сжатии рабочее тело возвращается в первоначальное состояние вдоль кривой 2a 1, при этом над ним совершается отрицательная работа A 2 a 1 численно равная площади под кривой 2a 1. Суммарная работа за цикл:

Это значит, что внешние силы совершают работу над рабочим телом. Такой круговой процесс называется обратным. В результате обратного цикла некоторое количество теплоты забирается у холодильника и передается нагревателю за счет работы внешних сил. Расширение рабочего тела происходит при более низкой температуре, чем сжатие. В результате некоторое количество теплоты забирается у холодного тела и передается горячему за счет работы внешних сил. Машина, которая работает по такому циклу, называется холодильной .

За счет работы внешних сил машина отдает больше тепла, чем получает:

(3)

Работа такой машины характеризуется холодильным коэффициентом:

где Q 2 – теплота, отнятая от холодного тела, A – работа, выполненная над рабочим телом за цикл. Холодильный коэффициент больше единицы (тепловые насосы).

Теоретический анализ работы идеальной тепловой машины провел французский ученый Сади Карно в 1824 году. Он предложил круговой процесс (цикл) для работы идеальной тепловой машины, который складывается из двух изотерм и двух адиабат. Этот цикл называется циклом Карно . Цикл Карно сыграл важную роль в развитии теплотехники и термодинамики. Анализ этого цикла позволил улучшить работу тепловых машин, повысить их КПД .

Прямой цикл Карно складывается из четырех последовательных равновесных процессов рис.4.

Рис.4. Цикл Карно

1→2 - изотермическое расширение при температуре T 1 , 2→3 – адиабатное расширение, 3→4 – изотермическое сжатие при температуре T 2 , 4→1 – адиабатное сжатие. В машине, работающей по циклу Карно, отсутствуют потери энергии на теплопроводность, трение и т.д. Цикл Карно обратимый, потому что все процессы в нем квазистатические. С машиной связаны два тепловых резервуара. Один с температурой T 1 – нагреватель или теплоотдатчик, второй с более низкой температурой T 2 – холодильник или теплоприемник. Эти резервуары настолько велики, что отдача или прием теплоты практически не изменяют их температуры.

Определим работу, выполненную идеальным газом за один цикл Карно. При изотермическом процессе 1→2 T 1 = const, ΔU 12 = 0 и, согласно I началу термодинамики газу надо передать от нагревателя количество теплоты Q 1 , равное работе, которую газ выполняет при расширении:

(5)

При адиабатном процессе 2→3, Q 23 = 0, температура газа понижается до T 2 , работа при расширении газа выполняется за счет уменьшения его внутренней энергии. Согласно I началу термодинамики:

Отсюда следует, что:

Изотермическое сжатие газа 3→4 выполняется за счет работы ты внешних сил. Чтобы температура газа осталась постоянной от него надо отнять количество теплоты Q 2 и передать ее холодильнику. Для изотермического процесса T 2 = const, ΔU 23 = 0 и, согласно I началу термодинамики.