Основные функции минеральных веществ. Химический состав клетки

Цели:

Обучающие :

  • Систематизация знаний о химическом составе клетки.
  • Закрепление знаний об химических элементах и их роли в клетках живых организмов, химической общности живой и неживой природы.
  • Осознание роли химических веществ для нормального функционирования организма человека.

Воспитательные:

  • формирование мировоззрения, активной жизненной позиции, опыта правильного поведения и общения, превращение этих ценных свойств в устойчивые нравственные качества личности, формирование готовности к самовоспитанию и психического развития; воспитать предметную компетентность учащихся. Привить гигиенические навыки здорового образа жизни.

Развивающие:

  • развитие интеллекта, внимания, восприятия, памяти, мышления, воображения, речи, эмоционально-волевой сферы школьников; выделение важнейших, доминирующих задач урока, их конкретизация с учетом особенностей и возможностей коллектива.

Оборудование: схема «Химические элементы», картинки с изображением растений и животных, знаки химических элементов, мука, штатив, стеклянная палочка, фарфоровая чашка.

Задачи:

  1. Рассказать о единстве химического состава живых организмов и неживой природы.
  2. Раскрыть роль минеральных веществ в жизни клетки живого организма.

План урока:

  1. Проверка знаний по теме «Методы цитологии», «Клеточная теория» (рассказ, тесты).
  2. Новая тема:
    1. Химический состав клетки.
    2. Классификация минеральных веществ (по содержанию в клетке).
    3. Роль макро и микроэлементов в жизни клетки.
    4. Роль химических элементов в организме человека.
  3. Закрепление.
  4. Домашнее задание.

Ход урока

I. Проверка знаний:

1. Методы и задачи цитологии.

2. Увеличительные приборы. Устройство светового микроскопа. Как узнать общее увеличение светового микроскопа?

3. История становления цитологии. Вклад отдельных ученых в развитие клеточной теории.

4. Карточки с тестами:

    Деление клетки открыл и установил, что каждая клетка происходит от исходной путем деления:
    а) Левенгук
    б) Р. Гук
    в) Р. Броун
    г) Р. Вихров

    Клеточное строение организмов всех царств свидетельствует о:
    а) единстве органического мира
    б) сходстве живой и неживой природы
    в) происхождении живого от неживого
    г) сходстве строения бактерий, вирусов, грибов.

    Создателями клеточной теории являются:
    а) Дарвин и Уоллес
    б) Мендель и Морган
    в) Гук и Левенгук
    г) Шлейден и Шванн

    Клеточной теории соответствует следующее положение:
    А) размножение клеток происходит путем их деления
    Б) хромосомы – материальные носители наследственности
    В) все живые существа, кроме бактерий, имеют клеточное строение.
    Г) клетки всех живых существ и вирусы сходны по строению и функциям

    В чем проявляется общность между выводами клеточной и атомно-молекулярной теорий?
    А) в установлении единицы строения объекта
    б) в сходстве строения объектов исследования
    в) в сходстве свойств объектов исследования

II. Новая тема: А сейчас мы с вами посмотрим демонстрационный опыт.

Демонстрационный опыт «Сжигание муки в фарфоровой чашке»

Какие вещества образуются при сгорании муки? Какие признаки реакции вы наблюдали?

Признаки реакции:

  • капельки воды (пары воды конденсируются на холодной стеклянной пластинке);
  • дым (сгорают органические вещества);
  • зола (неорганические вещества). (Слайд)

Итак, в состав живых организмов входят органические и неорганические вещества, а также вода. Сегодня на уроке мы остановимся на изучении неорганических веществ в клетках живых организмов, узнаем какую роль выполняют те или иные химические элементы в процессах жизнедеятельности живых организмов.

Послушайте, ребята, строки из стихотворения С. Щипачева «Читая Менделеева»:

Другого ничего в природе нет
Ни здесь, ни там, в космических глубинах:
Все – от песчинок малых до планет –
Из элементов состоит единых.

Ребята, на уроках биологии и химии мы не раз убеждались в том, что нас окружает мир химических соединений. В любом живом организме, в том числе и в организме человека, непрерывно протекает множество химических реакций. Можно сказать, что каждая живая клетка представляет собой микроскопическую химическую лабораторию. Поступление химических веществ осуществляется в результате важного свойства клетки – обмена веществ и энергии.

Ребята, давайте вспомним и ответим на следующие вопросы:

  • Что называется обменом веществ?
  • Каково значение обмена веществ?
  • Назовите основные направления обмена веществ?
  • Что такое ассимиляция?
  • Что называется диссимиляцией?

Для каждого вида организмов характерен особый, генетически закрепленный тип обмена веществ. Любое заболевание сопровождается нарушениями обмена, а генетически обусловленные нарушения обмена являются причиной многих наследственных болезней.

Многим химикам известны крылатые слова, сказанные в 40-х годах текущего столетия немецкими учеными Вальтером и Идой Ноддак, что в каждом булыжнике на мостовой присутствуют все элементы Периодической системы. Вначале эти слова были встречены далеко не с единодушным одобрением. Однако, по мере того как разрабатывались все более точные методы аналитического определения химических элементов, ученые все больше убеждались в справедливости этих слов.

Если согласиться с тем, что в каждом булыжнике содержатся все элементы, то это должно быть справедливо и для живого организма. Все живые организмы на Земле, в том числе и человек, находятся в тесном контакте с окружающей средой. Жизнь требует постоянного обмена веществ в организме. Поступлению в организм химических элементов способствуют питание и потребляемая вода.

Учитель: Сколько химических элементов включает современная периодическая система Д.И. Менделеева?

Из существующих в природе 118 элементов более 13 не имеют никакого значения для функционирования живых организмов, зато 90 элементов в большей или меньшей степени принимает участие и в построении живого организма, и в процессах, в нем происходящих. Основным строительным материалом являются четыре элемента: углерод, водород, кислород и азот, а остальные, часто находясь совсем в микроскопических количествах в организме, влияют на здоровье, и дефицит или избыток какого-либо элемента часто является причиной того или иного заболевания.

Никаких специальных элементов, характерных только для живых организмов, не существует, и это является одним из доказательств общности живой и неживой природы. Но количественное содержание тех или иных элементов в живых организмах и в окружающей их неживой среде существенно отличается. Например, кремния в почве около 33%, а в наземных растениях лишь 0,15%. Подобные различия указывают на способность живых организмов накапливать только те элементы, которые необходимы им для жизнедеятельности.

Для изучения количественного состава химических элементов, содержащихся в клетках живых организмов, проведем самостоятельную работу используя учебник. Самостоятельная работа учащихся (5 минут).

  • Выпишите химические элементы, которые в сумме составляют 98% всего содержимого клетки.
  • Выпишите химические элементы, содержание которых в клетке исчисляется десятыми и сотыми долями процентов.

Учитель: Ребята, проведем проверку выполнения самостоятельной работы.

Итак, мы выявили три группы элементов: макроэлементы – доля которых составляет 98% и микроэлементов – доля которых составляет 1,9%, ультрамикроэлементы, их концентрация не превышает 10-5%. К ним относятся уран, радий, золото, серебро, бериллий, селен и др. редкие элементы.

Многие химические элементы, входящие в состав клетки, выполняют определенную функцию. Химические элементы, которые входят в состав клетки и выполняют биологические функции называются биогенными. К биогенным элементам относится около 30 элементов. Среди биогенных элементов особое место занимают так называемые элементы – органогены, которые образуют важнейшие вещества в живых организмах - воду, белки, жиры, углеводы, витамины, гормоны и др. К органогенам относятся шесть элементов – C, O, H, N, H, S.

К числу биогенных элементов относится и ряд металлов, среди которых особенно важные биологические функции выполняют десять, так называемых “ металлы жизни”. Этими металлами являются четыре s – элемента C ,K, Na, Mg и шесть d элементов – Fe, Zn, Cu, Mn, Mo, Co.

К макроэлементам относят кислород (65-75%), углерод (15-18%), водород (8-10%), азот (2,0-3,0%), калий (0,15-0,4 %), сера (0,15-0,2%), фосфор (0,2-1,0%), хлор (0,05-0,1%), магний (0,02-0,03 %), натрий (0,02-0,03%), кальций (0,04-2,00%), железо (0,01-0,015%. Такие элементы, как C, O, H, N, S, P входят в состав органических соединений.

А теперь мы послушаем выступления учащихся о роли макроэлементов в клетке и в организме растений, животных и человека. В ходе выступления товарищей заполняем таблицу в тетрадях.(Слайд)

  1. Кислород - входит в состав практически всех органических веществ клетки. Образуется в ходе фотосинтеза при фотолизе воды. Для аэробных организмов служит окислителем в ходе клеточного дыхания, обеспечивая клетки энергией. В наибольших количествах в живых клетках содержится в составе воды. Он не только существенная часть вдыхаемого нами воздуха и питьевой воды, он так же занимает значимое место в нашем теле. С 65% общей массы нашего тела, кислород, самый важный химический элемент в составе человеческого организма.
  2. Углерод - входит в состав всех органических веществ; скелет из атомов углерода составляет их основу. Кроме того, в виде CO2 фиксируется в процессе фотосинтеза и выделяется в ходе дыхания, в виде CO (в низких концентрациях) участвует в регуляции клеточных функций, в виде CaCO3 входит в состав минеральных скелетов.
  3. Водород, как и кислород - составной элемент воздуха и питьевой воды. И он также относится к основным компонентам человеческого тела. 10% нашего веса состоят из водорода. Водород - входит в состав всех органических веществ клетки. В наибольших количествах содержится в составе воды. Некоторые бактерии окисляют молекулярный водород для получения энергии.
  4. Азот - входит в состав белков, нуклеиновых кислот и их мономеров - аминокислот и нуклеотидов. Из организма животных выводится в составе аммиака, мочевины, гуанина или мочевой кислоты как конечный продукт азотного обмена. В виде оксида азота NO (в низких концентрациях) участвует в регуляции кровяного давления. Несмотря на то, что азот также содержится в воздухе, он более известен как теплоноситель, в жидкой форме. Всё же, его таинственно испаряющейся газы не должны вводить в заблуждение- 3% массы нашего тела состоят из азота.
  5. Может ли сера, с её неприятным видом и запахом, быть важной для нашего организма? Да, это именно так. Сера - существенная составная часть аминокислот и коферментов. Сера - входит в состав серосодержащих аминокислот, поэтому содержится в большинстве белков. В небольших количествах присутствует в виде сульфат -иона в цитоплазме клеток и межклеточных жидкостях.
  6. Фосфор, как светящееся вещество, известен каждому. Но далеко не каждый знает, что именно благодаря фосфору в организме, происходит образование ДНК, основы человеческой жизни. Фосфор - входит в состав АТФ, других нуклеотидов и нуклеиновых кислот (в виде остатков фосфорной кислоты), в состав костной ткани и зубной эмали (в виде минеральных солей), а также присутствует в цитоплазме и межклеточных жидкостях (в виде фосфат -ионов).
  7. Магний жизненно необходим для всех организмов на земле, естественно, для нас людей, тоже. Вопреки его незначительной части- 0,05% массы нашего тела, недостаток магния ведет к отчётливо ощутимым последствиям: Нервозность, головные боли, усталость и судороги мышц являются только некоторыми из них. Магний - кофактор многих ферментов, участвующих в энергетическом обмене и синтезе ДНК; поддерживает целостность рибосом и митохондрий, входит в состав хлорофилла. В животных клетках необходим для функционирования мышечных и костных систем.
  8. Даже если он и составляет всего 1,5%, кальций- важный металл в нашем организме. Именно он придаёт прочность нашим костям и зубам. Кальций - участвует в свёртывании крови, а также служит одним из универсальных вторичных посредников, регулируя важнейшие внутриклеточные процессы (в том числе участвует в поддержании мембранного потенциала, необходим для мышечного сокращения и экзоцитоза). Нерастворимые соли кальция участвуют в формировании костей и зубов позвоночных и минеральных скелетов беспозвоночных.
  9. Натрий мы потребляем, прежде всего, в форме хлорида натрия, так же известного как поваренная соль. Элемент важен для защиты клеток и движения нервных сигналов. Натрий - участвует в поддержании мембранного потенциала, генерации нервного импульса, процессы осморегуляции (в том числе работу почек у человека) и создании буферной системы крови.
  10. Калий, со скромными 0,2%, принимает небольшое участие в процессах организма. Он относится к электролитам, в которых наше тело нуждается, прежде всего, при спорте. Его недостаток может вызвать чувство истощения и судороги. Калий - участвует в поддержании мембранного потенциала, генерации нервного импульса, регуляции сокращения сердечной мышцы. Содержится в межклеточных веществах.

Учитель: Жизненно необходимые элементы натрий и калий функционируют в паре. Надежно установлено, что всем живым организмам присуще явление ионной асимметрии – неравномерное распределение ионов внутри и вне клетки. Например, внутри клеток мышечных волокон, сердца, печени, почек имеется повышенное содержание ионов калия по сравнению с внеклеточным. Концентрация ионов натрия, наоборот, выше вне клетки, чем внутри ее. Наличие градиента концентраций калия и натрия – экспериментально установленный факт. Интересно, что по мере старения организма градиент концентраций ионов калия и натрия на границе клеток падает. При наступлении смерти концентрации калия и натрия внутри и вне клетки сразу же выравниваются. В организме человека содержится в среднем около 140 г калия и около 100 г. натрия. С пищей мы ежедневно потребляем от 1,5 до 7 г ионов калия и от 2 до 15 г ионов натрия. Потребность в ионах Na настолько велика, что их необходимо специально добавлять в пищу (в виде поваренной соли). Значительная потеря ионов натрия (они выводятся из организма с мочой и потом) неблагоприятно сказывается на здоровье человека. Поэтому в жаркую погоду врачи рекомендуют есть больше солёного. Однако и избыточное содержание их в пище вызывает негативную реакцию организма, например повышение артериального давления.

Учитель: Содержание элементов в организме объясняют следующие четверостишия.

Кровь наша чуть соленая на вкус –
Содержится в ней натрия хлорид;
В межклеточном пространстве натрий-плюс
Давленье Осмоса для клеток сохранит.
Хлорид же ионы царствуют в желудке,
Чтобы запас соляной кислоты
Нам обеспечить, – это же не шутки –
Белковой пищи расщеплять хвосты.

Состав человеческого тела.

Французский химик Г. Бертран подсчитал, что тело человека, весящего около 100 кг, содержит кислорода 63 кг, углерода – 19 кг, водорода – 9 кг, азота – 5 кг, кальция – 1 кг, фосфора – 700 г, серы – 640 г, натрия – 25о г, калия – 220 г, хрома – 180 г, магния – 80 г, железа – 3 г, йода – 0,03 г. Фтора, брома, марганца, меди – еще меньше. Посчитайте

А сейчас мы рассмотрим микроэлементы Слайд К микроэлементам, составляющим от 0,001% до 0,000001% массы тела живых существ, относят ванадий, германий, йод, кобальт, марганец, никель, рутений, селен, фтор, медь, хром, цинк.

Среди всех микроэлементов в особую группу выделяют так называемые незаменимые микроэлементы. Незаменимые микроэлементы – микроэлементы, регулярное поступление которых с пищей или водой в организм абсолютно необходимо для нормальной его жизнедеятельности. Незаменимые микроэлементы входят в состав ферментов, витаминов, гормонов и других биологически активных веществ. Незаменимыми микроэлементами являются: железо, йод, медь, марганец, цинк, кобальт, молибден, селен, хром, фтор.

Вопросы к классу:

  • Какие заболевания вызываются недостатком химических элементов в растительных и животных организмах?
  • В каких пищевых продуктах содержатся микроэлементы?
  • Какова же биологическая роль микроэлементов?

Вам предлагается выслушать внимательно сообщения, которые подготовили ваши одноклассники и ответить на предложенные выше вопросы.

1. “Биологическая роль фтора ”

В небольших количествах фтор входит в состав живых организмов. В организме человека около 2,6 г фтора, из них 2,5 г в костях. Биологическая роль фтора заключается в том, что он участвует в процессах образования зубов и костей, в обмене веществ и в активизации некоторых ферментов. Нормальное поступление фтора в организм человека от 2,5 до 3,5 мг в сутки. Понижение или повышение количества фтора вызывают различные заболевания. Хроническое отравление соединениями фтора вызывает болезнь флюороз.

Учитель: А я хочу добавить к сказанному веселое стихотворение

Исследования доказали,
Что фтор как микроэлемент
Так важен для зубной эмали,
Как для строительства цемент.
Известно: при нехватке фтора
Зубная боль возникает скоро.
Избыток фтора тоже плох:
Остаться можно без зубов.

2. “Биологическая роль кобальта”

Кобальт – микроэлемент, оказывающий разнообразное влияние на жизненные процессы растительных, животных организмов и человека. В организме человека содержится 0,03 г.кобальта, из них 14% входит в состав костей, по 43% - в мышцах и мягких тканях. Больше всего кобальта в печени, почках и в поджелудочной железе. Биологическая роль кобальта велика – он участвует в процессах обмена кроветворения, влияет на белковый, жировой, углеводный, минеральный обмены, обмен витаминов. Например, витамин С, ускоряет синтез витамина РР, входит в состав ферментов (пептидазы).

Кобальт является составной частью витамина В12.

3. “Биологическая роль меди”

Медь - один из важнейших микроэлементов, участвующих в процессах фотосинтеза и влияет на усвоение азота растениями. В организме человека содержится около 0,1 г. меди. Суточная потребность взрослого человека от 2 до 3 мг. Медь концентрируется в печени, в крови, в головном мозге, в костях. Дефицит меди и её избыток одинаково вреден для организма. При недостатке меди в рационе человека уменьшается образование гемоглабина и развивается анемия, нарушается костеобразование с изменениеми в скелете. Избыток меди накапливается в печени, мозге, почках, глазах и вызывает хронические воспалительные процессы в тканях.

Учитель: Спасибо, ребята, за выступления.

Оказывается, что можно составить элементный портрет любого человека, который строго соответствует полу, возрасту, конституции, темпераменту и, конечно, образу жизни. Элементный «портрет» – это тот химический состав, т.е. содержание макро- и микроэлементов, который мы «носим» в себе. И если в нашей жизни (организме) происходят какие-то изменения, то они затрагивают и наш элементный состав, который очень быстро реагирует на любые коллизии.

Точный диагноз стресса, который зачастую является причиной заболевания, можно, оказывается, установить по спектральному составу волос. Концентрация всех химических элементов, какие только есть в нашем организме, значительно выше в волосах, нежели в таких привычных для анализа биологических жидкостях, как кровь и моча. Кроме того, волосы концентрируют в себе практически все химические элементы, которые содержатся в нашем организме. Например, если по сыворотке крови достоверно удается получить данные о 6–8 элементах, то волосы «выдают» информацию о 20–30 элементах. Все анализы проводят с помощью плазменного спектрометра. Результаты анализа обрабатываются на компьютере, который извлекает из своей памяти сведения о средней для здорового человека данного пола и возраста норме макро- и микроэлементов, сравнивает с ними элементный состав волос пациента и оценивает отклонения в минеральном составе. В первую очередь определяется содержание таких жизненно важных элементов, как кальций, калий, железо, медь, магний, цинк, потому что функции их чрезвычайно важны для нашего организма.

По отмеченному дисбалансу ставится предварительный диагноз, затем определяется программа лечения, направленная на устранение дефицита недостающего элемента и выведения из организма вредных или содержащихся в избытке веществ. Такая коррекция минерального обмена организма может проводиться путем составления специальной диеты с включением продуктов, которые содержат в значительных количествах элементы, необходимые для нормальной жизнедеятельности вашего организма (причем диета должна составляться только специалистами)

В волосах человека, много думающего, как определили, больше, по сравнению с остальными, цинка и меди. Марганец, свинец, титан, медь и серебро преобладают у тех, у кого цвет волос темный. В седых же волосах содержится лишь никель. Да еще они и с мудростью ассоциируются.

В волосах находят и золото. Причем по его содержанию женщины воистину более драгоценны, чем мужчины. Хотя у Чингисхана якобы имелся целый клок золотых волос на затылке.

Ультрамикроэлементы составляют менее 0,0000001% в организмах живых существ, к ним относят золото, серебро оказывают бактерицидное воздействие, ртуть подавляет обратное всасывание воды в почечных канальцах, оказывая воздействие на ферменты. Так же к ультрамикроэлементам относят платину и цезий. Некоторые к этой группе относят и селен, при его недостатке развиваются раковые заболевания. Селен относится к незаменимым микроэлементам. В тоже время, при передозировке, он сильно токсичен, поэтому его употребление как БАД, вызывает большие дискуссии в кругах учёных.

Функции ультрамикроэлементов еще мало понятны.

  • Итак, ребята, что нового вы узнали на уроке?
  • Что вам понравилось?
  • Что не понравилось?
  • Что вас удивило?

Выставление оценок.

1). Играют роль кофакторов в энзиматических реакциях. Так, многие ионы образуют комплексы с белками, в том числе ферментами. Последние для полного проявления своей каталитической активности нуждаются в присутствии минеральных кофакторов – ионов калия, кальция, натрия, магния, железа. Ионы железа, меди и особенно магния необходимы для активации ферментов, связанных с переносом и высвобождением энергии, транспорта и связывания кислорода.

2). Принимают участие в поддержание осмотического давления и кислотно-основного равновесия (фосфатный и гидрокарбонатный буферы).

3). Обеспечивают процессы свертывания крови,

4). Создают мембранный потенциал и потенциал действия возбудимых клеток

5). Минеральные вещества входят в структуры самых различных органов тела. Неорганические вещества могут иметь в организме форму нерастворимых соединений (например, в костной и хрящевой тканях).

6). Участвуют в окислительно-восстановительных реакциях и др.

Большую роль в минеральном обмене играют ионы натрия и калия. Эти катионы определяют величину рН, осмотическое давление, объем жидкостей тела. Они участвуют в формировании биоэлектрических потенциалов, в транспорте аминокислот, сахаров и ионов через мембрану клеток. Натрий составляет 93% всех катионов плазмы крови, его концентрация в плазме крови равна 135-145 ммоль/л. Калий – в основном внутриклеточный катион, в плазме крови его концентрация равна 3,3-4,9 ммоль/л.

В организме здорового человека массой тела около 70 кг содержится 150-170 г натрия. Из них 25-30% входят в состав костей и непосредственного участия в метаболизме не принимают. Около 70% общего натрия в организме составляет собственно обменный натрий.



Дневной пищевой рацион жителей цивилизованных стран содержит в среднем 10-12 г хлорида натрия, однако истинная потребность человека в нем значительно ниже и приближается к 4-7 г. Это количество хлорида натрия содержится в обычной пище, что ста­вит под сомнение необходимость ее дополнительного подсаливания.

Избыточный прием поваренной солиможет приводить к увеличению объемов жидкостей тела, повышению нагрузки на сердце и почки. Увеличение в этих условиях проникновения натрия, а с ним и воды в межклеточные промежутки тканей стенки кровеносных сосудов способствует их набуханию и утолщению, а также сужению просвета сосудов.

Постоянство содержания ионов натрия и калия в плазме крови поддерживается в основном почками. При снижении концентра­ции натрия и увеличении калия повышается реабсорбция натрия и снижается реабсорбция калия, а также растет секреция калия в почечных канальцах под влиянием минералокортикоида коры надпочечников альдостерона.

В организме здорового человека массой 70 кг содержится 45-35 ммоль/кг калия. Из них всего 50-60 ммоль находятся во внеклеточном пространстве, а остальной калий сосредоточен в клетках. Таким образом, калий является основным внутриклеточным катионом. С возрастом общее содержание калия в организме уменьшается.

Суточное потребление калия составляет 60-100 ммоль; почти столько же выводится почками и лишь немного (2%) – с каловыми массами.

Физиологическая роль калия заключается в его участии во всех видах обмена веществ, в синтезе АТФ и поэтому он влияет на сократимость. Недостаток его вызывает атонию скелетных мышц, умеренный избыток – повышение тонуса, а очень высокое содержание парализует мышечное волокно. Калий вызывает расширение сосудов. Также он участвует в синтезе ацетилхолина, в разрушении холинэстеразы и, следовательно, влияет на синаптическую передачу возбуждения. Вместе с другими ионами он обеспечивает клетке способность к возбуждению.

Хлор является вторым после натрия внеклеточным анионом. Его концентрация во внеклеточной жидкости и плазме составляет 103-110 ммоль/л. Общее содержание хлора в организме около 30 ммоль/кг. Значительное количество хлора обнаружено только в клетках слизистой оболочки желудка. Именно он является резервом для синтеза соляной кислоты желудочного сока, соединяясь с ионами водорода, которые извлекаются из крови клетками слизистой оболочки и выводятся в просвет желудка.

Нормальное содержание кальция в плазме 2,1-2,6 ммоль/л. Из них 50% связаны с белками плазмы (особенно альбуминами), 10% входят в состав растворимых комплексов, 40% находятся в свободной ионизирован­ной форме, которая с клинической точки зрения представляет наибольший интерес.

Физиологически активными являются только свободные ионы Са 2+ , поэтому регуляция обмена направлена на поддержание постоянства концентрации в плазме не общего кальция, а только его физиологически активной фракции.

Наибольшей функциональной активностью обладают ионы кальция, связанные с ионом фосфора. Кальций принимает активное участие в процессах возбуждения, синаптической передачи, мышечного сокращения, сердечной деятельности, участвует в окислительном фосфорилировании углеводов и жиров, в свертывании крови, влияет на проницаемость клеточных мембран, формирует структурную основу костного скелета. Значительная часть внутриклеточного кальция находится в эндоплазматической сети (Т-цистерны).

Главная роль в регуляции равновесия между кальцием плазмы и кальцием костей принадлежит гормону околощитовидных желез (паратирин).

При употреблении пищи, содержащей значительное количество каль­ция, большая его часть выделяется через кишечник в результате осаждения в основной кишечной среде в виде нерастворимых соединений.

Фосфор поступает в организм главным образом с молочными, мясными, рыбными и зернобобовыми продуктами. Его концентрация в сыворотке крови равна 0,81-1,45 ммоль/л. Суточная потребность в фосфоре составляет примерно 1,2 г, у беременных и кормящих женщин – до 1,6-1,8 г. Фосфор является анионом внутриклеточной жидкости, макроэргических соединений, коферментов тканевого дыхания и гликолиза. Нерастворимые фосфаты кальция составляют основную часть минерального компонента костей, придавая им прочность и твердость. Соли фосфорной кислоты и ее эфиров являются компонентами буферных систем поддержания кислотно-основного состояния тканей.

Железонеобходимо для транспорта кислорода и для окислительных реак­ций, так как оно входит в состав гемоглобина и цитохромов митохондрий. Его концентрация в крови в комплексе с транспортным белком трансферрином в норме равна 1,0-1,5 мг/л. Суточная потребность в железе для мужчин соответствует 10 мг, для женщин де­тородного возраста в связи с менструальны­ми кровопотерями эта величина значительно больше и приближается к 18 мг. Для бере­менных и кормящих женщин в связи с по­требностями детского организма этот па­раметр приближается соответственно к 33 и 38 мг. Железо содержится в мясе, печени, зернобобовых продуктах, гречневой и пшенной крупах. Недостаточность поступления железа в организм встречается часто. Так, у 10-30% женщин детородного возраста выявляется железодефицитная анемия.

Йод представляет собой единственный из известных микроэлементов, участвующих в построении молекул гормонов. Источниками йода являются морские растения и морская рыба, мясо и молочные продукты. Концентрация йода в плазме крови равна 10-15 мкг/л. Суточная потребность составляет 100-150 мкг, для беременных и кормящих женщин – 180-200 мкг. До 90% циркулирующего в крови органического йода приходится на долю тироксина и трийодтиронина. Недостаточное поступление в организм йода может быть причиной нарушения функций щитовидной железы.

Фторобеспечивает защиту зубов от карие­са. Суточная потребность во фторе равна 0,5-1,0 мг. Он поступает в организм с питьевой водой, рыбой, орехами, печенью, мясом, продуктами из овса. Предполагают, что он блокирует микро­элементы, необходимые для активации бактериальных ферментов. Фтор стимулирует кроветворение, реакции иммунитета, предуп­реждает развитие старческого остеопороза.

Магний – внутриклеточный катион (Mg 2+), содержащийся в организме в количестве 30 ммоль/кг массы тела. Кон­центрация магния в плазме крови равна 0,65-1,10 ммоль/л. Суточная потребность в нем – около 0,4 г. Магний является катализатором многих внутриклеточных процессов, особенно свя­занных с углеводным обменом. Он снижает возбудимость нервной системы и сокра­тительную активность скелетных мышц, спо­собствует расширению кровеносных сосудов, уменьшению частоты сокращений сердца и снижению артериального давления.

Клетка состоит из органических и минеральных веществ.

Минеральный состав клеток

Из неорганических веществ в состав клетки входят 86 элементов Периодической таблицы, около 16-18 элементов жизненно необходимы для нормального существования живой клетки.

Среди элементов выделяют: органогены, макроэлементы, микроэлементы и ультрамикроэлементы.

Органогены

Это вещества, из которых состоят органические вещества: кислород, углерод, водород и азот.

Кислород (65-75%) - содержится в огромном количестве органических молекул - белках, жирах, углеводах, нуклеиновых кислотах. В виде простого вещества (О2) образуется в процессе оксигенного фотосинтеза (цианобактерии, водоросли, растения).

Функции: 1. Кислород - сильный окислитель (окисляет глюкозу в процессе клеточного дыхания, в процессе выделяется энергия)

2. Входит в состав органических веществ клетки

3. Входит в состав молекулы воды

Углерод (15-18%) - является основой строения всех органических веществ. В виде углекислого газа выделяется в процессе дыхания, а поглощается в процессе фотосинтеза. Может быть в виде СО - угарного газа. В виде карбоната кальция (СаСО3) входит в состав костей.

Водород (8 - 10%) - как и углерод входит в состав любого органического соединения. А еще входит в состав воды.

Азот (2 - 3%) - входит в состав аминокислот, а значит и белков, нуклеиновых кислот, некоторых витаминов и пигментов. Фиксируется бактериями из атмосферы.

Макроэлементы

Магний (0,02 - 0,03%)

1. В клетке - входит в состав ферментов, участвует в синтезе ДНК и энергетическом обмене

2. У растений - входит в состав хлорофилла

3. У животных - входит в состав ферментов, участвующих в функционировании мышечной, нервной и костной тканей.

Натрий (0,02 - 0,03%)

1. В клетке - входит в состав калиево-натриевых каналов и насосов

2. У растений - участвует в осмосе, что обеспечивает поглощение воды из почвы

3. У животных - участвует в работе почек, поддержании сердечного ритма, входит в состав крови (NaCl), помогает поддерживать кислотно-щелочной баланс

Кальций (0,04 - 2,0%)

1. В клетке - участвует в избирательной проницаемости мембраны, в процессе соединения ДНК с белками

2. У растений - образует соли пектиновых веществ, придает твердость межклеточному веществу, соединяющему растительные клетки, а также участвует в формировании межклеточных контактов

3. У животных - входит в состав костей позвоночных, раковин моллюсков и коралловых полипов, участвует в образовании желчи, повышает рефлекторную возбудимость спинного мозга и центра слюноотделения, участвует в синаптической передаче нервного импульса, в процессах свертывания крови, является необходимым фактором сокращения поперечно-полосатой мускулатуры

Железо (0,02%)

1. В клетке - входит в состав цитохромов

2. У растений - участвует в синтезе хлорофилла, входит в состав ферментов, участвующих в дыхании, входят в состав цитохромов

3. У животных - входит в состав гемоглобина

Калий (0,15 - 0,4%)

1. В клетке - поддерживает коллоидные свойства цитоплазмы, входит в состав калиево-натриевых насосов и каналов, активизирует ферменты, участвующие в синтезе белка при гликолизе

2. У растений - участвует в регуляции водного обмена и фотосинтеза

3. Нужен для правильного сердечного ритма, участвует в проведении нервного импульса

Сера (0,15 - 0,2%)

1. В клетке - входит в состав некоторых аминокислот - цитина, цистеина и метионина, образует дисульфидные мостики в третичной структуре белка, входит в состав некоторых ферментов и кофермента А, входит в состав бактериохлорофилла, некоторые хемосинтетики используют соединения серы для получения энергии

2. У животных - входит в состав инсулина, витамина В1, биотина

Фосфор (0,2 - 1,0%)

1. В клетке - в виде остатков фосфорной кислоты входит в состав ДНК, РНК, АТФ, нуклеотидов, коферментов НАД, НАДФ, ФАД, фосфорилированных сахаров, фосфолипидов и многих ферментов, в составе фосфолипидов образует мембраны

2. У животных - входит в состав костей, зубов, у млекопитающих является компонентом буферной системы, поддерживает кислотный баланс тканевой жидкости относительно постоянным

Хлор (0,05 - 0,1%)

1. В клетке - участвует в поддержании электронейтральности клетки

2. У растений - участвует в регуляции тургорного давления

3. У животных - участвует в формировании осмотического потенциала плазмы крови, также в процессах возбуждения и торможения в нервных клетках, входит в состав желудочного сока в виде соляной кислоты

Микроэлементы

Медь

1. В клетке - входит в состав ферментов, участвующих в синтезе цитохромов

2. У растений - входит в состав ферментов, участвующих в реакциях темновой фазы фотосинтеза

3. У животных - участвует в синтезе гемоглобина, у беспозвоночных входит в состав гемоцианинов - переносчиков кислорода, у человека - входит в состав пигмента кожи - меланина

Цинк

1. Участвует в спиртовом брожении

2. У растений - входит в состав ферментов, участвующих в расщеплении угольной кислоты и в синтезе растительных гормонов-ауксинов

Йод

1. У позвоночных - входит в состав гормонов щитовидной железы (тироксин)

Кобальт

1. У животных - входит в состав витамина В12 (принимает участие в синтезе гемоглобина), его недостаток приводит к анемии

Фтор

1. У животных - придает прочность костям и зубной эмали

Марганец

1. В клетке - входит в состав ферментов, участвующих в дыхании, окислении жирных кислот, повышает активность карбоксилазы

2. У растений - в составе ферментов участвует в темновых реакциях фотосинтеза и в восстановлении нитратов

3. У животных - входит в состав фосфатаз-ферментов, необходимых для роста костей

Бром

1. В клетке - входит в состав витамина В1, который участвует в расщеплении пировиноградной кислоты

Молибден

1. В клетке - в составе ферментов участвует в фиксации атмосферного азота

2. У растений - в составе ферментов участвует в работе устьиц и ферментов, участвующих в синтезе аминокислот

Бор

1. Влияет на рост растений

Неорганические ионы, или минеральные вещества, выполняют в организме следующие функции:

1. Биоэлектрическая функция. Эта функция связана с воз­никновением разности потенциалов на клеточных мембранах. Градиент концентрации ионов по обе стороны мембраны создаёт в разных клетках потенциал порядка 60-80 мВ. Внутренняя сторона клеточной мембраны относительно наружной заряжена отрицательно. Электрический потен­циал мембраны тем выше, чем больше содержание белка и его иониза­ция (отрицательный заряд) внутри клетки и концентрация катионов вне клетки (диффузия ионов Na + и К + через мембрану внутрь клетки затруд­нена). Данная функция неорганических ионов используется для регуля­ции функций особенно возбудимых клеток (нервных, мышечных) и для проведения нервных импульсов.

2. Осмотическая функция используется для регуляции осмо­тического давления. Живая клетка подчиняется закону изоосмополярности: во всех средах организма, между которыми есть свободный обмен водой, устанавливается одинаковое осмотическое давление. Если число ионов в какой-то среде возрастает, то вслед за ними устремляется вода, пока не установится новое равновесие и новый уровень осмотического давления.

3. Структурная функция обусловлена комплексообразующими свойствами металлов. Ионы металлов взаимодействуют с анионными группами белков, нуклеиновых кислот и других макромолекул и тем са­мым обеспечивают наряду с другими факторами поддержание опреде­лённых конформаций этих молекул. Поскольку биологическая активность биополимеров зависит от их конформаций, то нормальное осуществление белками их функций, беспрепятственная реализация информации, зало­женной в нуклеиновых кислотах, образование надмолекулярных ком­плексов, формирование субклеточных структур и другие процессы не­мыслимы без участия катионов и анионов.

4. Регуляторная функция заключается в том, что ионы ме­таллов являются активаторами ферментов и тем самым регулируют ско­рость химических превращений в клетке. Это прямое регуляторное дей­ствие катионов. Косвенное заключается в том, что ионы металлов часто необходимы для действия другого регулятора, например, гормона. При­ведём несколько примеров. Формирование активной формы инсулина невозможно без ионов цинка. Третичная структура РНК в огромной сте­пени определяется ионной силой раствора, а такие катионы, как Сr 2+ , Ni 2+ , Fe 2+ , Zn 2+ ,Mn 2+ и другие, непосредственно участвуют в формирова­нии спиральной структуры нуклеиновых кислот. Концентрация ионов Мg 2+ влияет на формирование такой надмолекулярной структуры, как рибосомы.

5. Транспортная функция проявляется в участии некоторых металлов (в составе металлопротеидов) в переносе электронов или про­стых молекул. Например, катионы железа и меди входят в состав цитохромов, являющихся переносчиками электронов в дыхательной цепи, а железо в составе гемоглобина связывает кислород и участвует в его пе­реносе.

6. Энергетическая функция связана с использованием фос­фат-анионов в образовании АТФ и АДФ (АТФ - основной носитель энер­гии в живых организмах).

7. Механическая функция. Например, катион Са +2 и фосфат-анион входят в состав гидроксилапатита и фосфата кальция костей и определяют их механическую прочность.

8. Синтетическая функция. Многие неорганические ионы ис­пользуются в синтезах сложных молекул. Например, ионы йода I¯ участ­вуют в синтезе йодтиронинов в клетках щитовидной железы; анион (SО 4) 2- - в синтезе эфиросерных соединений (при обезвреживании в ор­ганизме вредных органических спиртов и кислот). Важное значение в механизме защиты от токсического действия пероксида имеет селен. Он образует селеноцистеин - аналог цистеина, в котором вместо атомов серы атомы селена. Селеноцистеин является составной частью фермента глутатион-пероксидазы, катализирующей восстановление пероксида во­дорода глутатионом (трипептид - γ-глутамил-цистеинилглицин)

Важно отметить, что в известных пределах возможна взаимоза­меняемость некоторых ионов. При недостатке какого-то иона металла он может заменяться ионом другого металла, близким по физико-химическим свойствам и ионному радиусу. Например, ион натрия заме­щается ионом лития; ион кальция - ионом стронция; ион молибдена - ионом ванадия; ион железа - ионом кобальта; иногда ионы магния - ио­нами марганца.

Благодаря тому, что минеральные вещества активируют дейст­вие ферментов, они влияют на все стороны обмена веществ. Рассмотрим, в чём выражается зависимость обмена нуклеиновых кислот, белков, уг­леводов и липидов от наличия тех или иных неорганических ионов.


Клетка – элементарная единица живого, обладающая всеми признаками организма: способностью к размножению, росту, обмену веществ и энергией с окружающей средой, раздражимостью, постоянством химического сотсава.
Макроэлементы – элементы, количество которых в клетке составляет до 0.001% от массы тела. Примеры – кислород, углерод, азот, фосфор, водород, сера, железо, натрий, кальций и др.
Микроэлементы – элементы, количество которых в клетке составляет от 0.001% до 0.000001% от массы тела. Примеры – бор, медь, кобальт, цинк, йод и др.
Ультрамикроэлементы – элементы, содержание которых в клетке не превышает 0.000001% от массы тела. Примеры – золото, ртуть, цезий, селен и др.

2. Составьте схему «Вещества клетки».

3. О чем говорит научный факт сходства элементарного химического состава живой и неживой природы?
Это указывает на общность живой и неживой природы.

Неорганические вещества. Роль воды и минеральных веществ в жизнедеятельности клетки.
1. Дайте определения понятий.
Неорганические вещества – это вода, минеральные соли, кислоты, анионы и катионы, присутствующие как в живых, так и в неживых организмах.
Вода – одно из самых распространенных неорганических веществ в природе, молекула которого состоит из двух атомов водорода и одного атом кислорода.

2. Нарисуйте схему «Строение воды».


3. Какие особенности строения молекул воды придают ей уникальные свойства, без которых невозможна жизнь?
Структура молекулы воды образована двумя атомами водорода и одним атомом кислорода, которые образуют диполь, то есть вода имеет две полярности "+"и"-".Это способствует ее проницаемости через стенки мембраны, способностью растворять химические вещества. Кроме того, диполи воды связываются водородными связями друг с другом, что обеспечивает ее способность быть в различных агрегатных состояниях, а также - растворять или не растворять различные вещества.

4. Заполните таблицу «Роль воды и минеральных веществ в клетке».


5. Каково значение относительного постоянства внутренней среды клетки в обеспечении процессов ее жизнедеятельности?
Постоянство внутренней среды клетки называется гомеостазом. Нарушение гомеостаза влечёт к повреждению клетки или к её смерти, в клетке постоянно происходит пластический обмен и энергетический обмен, это две составляющие метаболизма, и нарушение этого процесса ведёт к повреждению или к гибели всего организма.

6. В чем состоит назначение буферных систем живых организмов и каков принцип их функционирования?
Буферные системы поддерживают определенное значение рН (показатель кислотности) среды в биологических жидкостях. Принцип функционирования заключается в том, что рН среды зависит от концентрации протонов в этой среде (Н+). Буферная система способна поглощать или отдавать протоны в зависимости от их поступления в среду извне или, напротив, удаления из среды, при этом рН не будет изменяться. Наличие буферных систем необходимо в живом организме, так как из-за изменения условий окружающей среды рН может сильно меняться, а большинство ферментов работает только при определенном значении рН.
Примеры буферных систем:
карбонатно-гидрокарбонатная (смесь Na2СО3 и NaHCO3)
фосфатная (смесь K2HPO4 и KH2PO4).

Органические вещества. Роль углеводов, липидов и белков в жизнедеятельности клетки.
1. Дайте определения понятий.
Органические вещества – это вещества, в состав которых обязательно входит углерод; они входят в состав живых организмов и образуются только при их участии.
Белки – высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединённых в цепочку пептидной связью.
Липиды – обширная группа природных органических соединений, включающая жиры и жироподобные вещества. Молекулы простых липидов состоят из спирта и жирных кислот, сложных - из спирта, высокомолекулярных жирных кислот и других компонентов.
Углеводы – это органические вещества, в своем составе имеющие карбонильную и несколько гидроксильных групп и иначе называемые сахарами.

2. Впишите в таблицу недостающую информацию «Строение и функции органических веществ клетки».


3. Что понимают под денатурацией белка?
Денатурация белка – это утрата белком своей природной структуры.

Нуклеиновые кислоты, АТФ и другие органические соединения клетки.
1. Дайте определения понятий.
Нуклеиновые кислоты – это биополимеры, состоящие из мономеров – нуклеотидов.
АТФ – это соединение, состоящее из азотистого основания аденина, углевода рибозы и трех остатков фосфорной кислоты.
Нуклеотид – это мономер нуклеиновой кислоты, который состоит из фосфатной группы, пятиуглеродного сахара (пентозы) и азотистого основания.
Макроэргическая связь – это связь между остатками фосфорной кислоты в АТФ.
Комплементарность – это пространственное взаимное соответствие нуклеотидов.

2. Докажите, что нуклеиновые кислоты являются биополимерами.
Нуклеиновые кислоты состоят из большого количества повторяющихся нуклеотидов и имеют массу 10.000 до нескольких миллионов углеродных единиц.

3. Охарактеризуйте особенности строения молекулы нуклеотида.
Нуклеотид представляет собой соединение из трех компонентов: остатка фосфорной кислоты, пятиуглеродного сахара (рибозы), и одного из азотистых соединений (аденин, гуанин, цитозин, тимин или урацил).

4. Какое строение имеет молекула ДНК?
ДНК – двойная спираль, состоящая из множества нуклеотидов, которые последовательно соединяются между собой за счет ковалентных связей между дезоксирибозой одного и остатком фосфорной кислоты другого нуклеотида. Азотистые основания, которые располагаются по одну сторону от остова одной цепи, связаны Н-связями с азотистыми основаниями второй цепи по принципу комплементарности.

5. Применив принцип комплементарности, постройте вторую цепочку ДНК.
Т-А-Т-Ц-А-Г-А-Ц-Ц-Т-А-Ц
А-Т-А-Г-Т-Ц-Т-Г-Г-А-Т-Г.

6. Каковы основные функции ДНК в клетке?
При помощи четырех типов нуклеотидов в ДНК записана вся важная информация в клетке об организме, которая передается последующим поколениям.

7. Чем молекула РНК отличается от молекулы ДНК?
РНК представляет собой одинарную цепь меньшего, чем ДНК, размера. В нуклеотидах находится сахар рибоза, а не дезоксирибоза, как в ДНК. Азотистым основанием, вместо тимина, является урацил.

8. Что общего в строении молекул ДНК и РНК?
И РНК, и ДНК являются биополимерами, состоящими из нуклеотидов. В нуклеотидах общим в строении является наличие остатка фосфорной кислоты и оснований аденина, гуанина, цитозина.

9. Заполните таблицу «Типы РНК и их функции в клетке».


10. Что такое АТФ? Какова его роль в клетке?
АТФ – аденозинтрифосфат, макроэргическое соединение. Его функции – универсальный хранитель и переносчик энергии в клетке.

11. Каково строение молекулы АТФ?
АТФ состоит из трех остатков фосфорной кислоты, рибозы и аденина.

12. Что представляют собой витамины? На какие две большие группы их разделяют?
Витамины – биологически активные органические соединения, играющие важную роль в процессах обмена веществ. Их разделяют на водорастворимые (С, В1, В2 и др.) и жирорастворимые (А, Е и др.).

13. Заполните таблицу «Витамины и их роль в организме человека».