Композитная броня. Бронирование современных отечественных танков

Для любой военной техники существуют три основные характеристики — подвижность, огневая мощь и защита. Сегодня мы поговорим о защите, о том, как современные основные боевые танки могут уверенно и успешно противостоять угрозам, которые встречают на поле боя. Начнем с самого главного и важного — с брони.

Когда снаряд почти победил броню

Вплоть до 60-х годов прошлого столетия основным материалом для брони являлась сталь средней и высокой твердости. Нужно улучшить защиту танка? Увеличиваем толщину стальных листов, располагаем их под рациональными углами наклона, делаем верхние слои брони тверже или создаем такую компоновку танка, чтобы иметь возможность сделать во лбу боевой машины максимально толстую броню.

Однако к середине 50-х годов прошлого столетия появились новые типы бронебойных кумулятивных снарядов, характеризующиеся чрезвычайно высокими показателями пробития. Настолько высокими, что эти снаряды не держала броня ни средних, ни тяжелых танков того времени. А ведь на подходе были еще противотанковые управляемые ракеты (или, сокращенно, ПТУР), чье пробитие достигало значений в 300-400 миллиметров стали. Да и обычные бронебойные или подкалиберные снаряды не отставали — их показатели пробития стремительно возрастали.

При всех своих преимуществах Т-54 и Т-55 к концу 50-х- началу 60-х годов не обладали достаточным уровнем защищенности.

На первый взгляд решение проблемы казалось простым — снова увеличивать толщину брони. Но, наращивая миллиметры стали, боевая техника получает и тонны лишней массы. А это напрямую влияет на подвижность танка, его надежность, простоту обслуживания и стоимость изготовления. Потому к вопросу увеличения защиты танка потребовалось подойти с другой стороны.

Противоснарядный бутерброд

Рассуждая в таком ключе, конструкторы пришли к закономерному выводу — нужно найти некий материал или комбинацию материалов, которые обеспечили бы надежную защиту от кумулятивной струи при относительно малой массе.

Дальше всего разработки в этом направлении продвинулись в Советском Союзе, где в конце 50-х начали экспериментировать со стеклопластиком и с легкими сплавами на основе титана или алюминия. Использование этих материалов в сочетании со сталью средней твердости давало неплохой выигрыш в массе брони. Результаты всех этих изысканий воплотились в первом основном боевом танке с комбинированной броней — Т-64.

Его верхняя лобовая деталь представляла собой «бутерброд» из 80-мм листа стали, двух листов стеклотекстолита общей толщиной 105 мм и еще одного 20-мм листа стали снизу. Лобовая броня танка была расположена под углом наклона в 68°, что в итоге давало ещё более солидную толщину брони. Башня Т-64 для своего времени также была защищена на отлично — будучи отлитой из стали, она имела во лбу пустоты справа и слева от орудия, которые заполнялись алюминиевым сплавом.

Керамика против вольфрама

Через некоторое время конструкторы открыли для себя преимущества керамики. Обладая в 2-3 раза меньшей плотностью, чем сталь, керамика превосходно противостоит проникновению как кумулятивной струи, так и сердечника оперенного подкалиберного снаряда.

В Советском Союзе комбинированная броня с использованием керамики появилась в начале 70-х годов прошлого столетия на основном боевом танке Т-64А, где в башне вместо алюминиевого сплава в качестве наполнителя использовались шары из корунда, залитые сталью.

Схема бронирования башни Т-64А. Круглые элементы — это те самые шары из корунда, которыми заполнялись ниши во лбу башни слева и справа от орудия.

Но не только Советский Союз использованил керамику. В 60-х годах в Англии была создана комбинированная броня «Чобхэм», представляющая собой пакет из множества слоев стали, керамики, полимеров и связующих материалов. При своей высокой стоимости «Чобхэм» показывал превосходную стойкость против кумулятивных снарядов и удовлетворительную стойкость против оперенных подкалиберных снарядов с вольфрамовыми сердечниками. В дальнейшем броня «Чобхэм» и ее модификации были внедрены на новейшие западные основные боевые танки: американский М1 «Абрамс», немецкий «Леопард-2» и британский «Челленджер».

Отдельного упоминания стоит так называемая «урановая броня» — дальнейшее развитие брони «Чобхэм», которую усилили плитами из обедненного урана. Этот материал характеризуется очень высокой плотностью и твердостью, выше, чем у стали. Также обедненный уран наравне со сплавами вольфрама используется для изготовления сердечников современных бронебойных оперенных подкалиберных снарядов. При этом его стойкость против кумулятивных и кинетических бронебойных снарядов на единицу массы выше, чем у катаной гомогенной стали. Этим и обусловлено использование плит из обедненного урана в лобовой броне башни танков М1 «Абрамс» в модификации М1А1НА (где HA — Heavy Armor).

Полуактивная броня

Еще одно интересное направление развития комбинированной брони — использование пакетов стальных пластин и инертного наполнителя. Как они устроены? Представьте пакет, состоящий из достаточно толстой стальной пластины, слоя инертного наполнителя и еще одной стальной пластины, но потоньше. И таких пакетов 20 штук, причем они размещены на некотором расстоянии друг от друга. Именно так выглядит наполнитель для башни танка Т-72Б, называемый пакетом «отражающих листов».

Как такая броня работает? Когда кумулятивная струя пробивает основную стальную пластину, в инертном наполнителе возникает высокое давление, он вспучивается и раздвигает стальные пластины спереди и сзади от него в стороны. Края отверстий, пробитых кумулятивной струей в стальных пластинах, загибаются, деформируют струю и мешают дальнейшему ее прохождению вперед.

Ниша для комбинированной брони башни Т-72Б, в которой располагаются те самые пакеты «отражающих листов».

Еще один вид полуактивной комбинированной брони — броня с ячеистым наполнителем. Она состоит из блоков ячеек, заполненных жидким или квазижидким веществом. Кумулятивная струя, пробивая такую ячейку, создает ударную волну. Волна, сталкиваясь со стенками ячейки, отражается в обратную сторону, заставляя жидкость или квазижидкое вещество противодействовать кумулятивной струе, вызывая ее торможение и разрушение. Подобный тип брони используется на основном боевом танке Т-80У.

На этом, пожалуй, можно завершить рассмотрение основных типов комбинированной брони современной бронетехники. Теперь пора рассказать о «второй шкуре» основных боевых танков — о динамической защите.

Защищаем танк с помощью взрывчатки

Первые эксперименты с динамической защитой начались еще в середине ХХ века, но в силу множества причин впервые такой тип защиты (сокращенно называемый ДЗ) был применен в бою значительно позже.

Как работает динамическая защита? Представьте себе контейнер, содержащий один или несколько зарядов взрывчатого вещества и металлические метательные пластины. Пробивая этот контейнер, кумулятивная струя вызывает детонацию взрывчатки, которая заставляет метательные пластины двигаться навстречу снаряду. При этом пластины пересекают траекторию кумулятивной струи, которая вынуждена пробивать их раз за разом. К тому же, из-за метательных пластин кумулятивная струя приобретает зигзагообразную форму, деформируется и разрушается.

По вышеописанному принципу работали первые модели динамической защиты: израильский «Блейзер» и советский «Контакт-1». Однако такая ДЗ была неспособна противостоять оперенным подкалиберным снарядам — эти типы снарядов, проходя через взрывчатое вещество, не вызывали его детонацию. Потому лучшие умы в оборонных конструкторских бюро начали работу над новым типом универсальной динамической защиты, которая могла бы одинаково хорошо бороться и с кумулятивными, и с подкалиберными снарядами.

Т-64БВ, оснащенный динамической защитой «Контакт-1».

Образцом такой защиты стала советская ДЗ «Контакт-5». Ее характерной особенностью является то, что крышка контейнера динамической защиты выполнена из достаточно толстого стального листа. Пробивая его, оперенный подкалиберный снаряд создает большое количество осколков, которые, двигаясь с высокой скоростью, и вызывают детонацию взрывчатки. И дальше все происходит так же, как и на первых образцах ДЗ — взрыв и толстая метательная пластина разрушают подкалиберный снаряд и существенно снижают его пробитие.

Схематическое устройство универсальной динамической защиты.

Еще один интересный пример динамической защиты — ДЗ «Нож». Она представляет собой контейнеры, вмещающие множество маленьких кумулятивных зарядов. Проходя через один из таких контейнеров, кумулятивная струя или сердечник оперенного подкалиберного снаряда вызывают детонацию зарядов, которые создают множество маленьких кумулятивных струй. Эти мелкие струи, воздействуя на атакующую кумулятивную струю или оперенный подкалиберный снаряд противника, разрушают их и разбивают на отдельные фрагменты.

Лучшая защита — это нападение

«А почему бы нам не сделать систему, которая отстреливала бы снаряды, летящие в танк, еще на подлете?» Наверно именно так примерно 60 лет назад в недрах конструкторских бюро зародилась идея о создании КАЗ — комплекса активной защиты.

Комплекс активной защиты — это набор, состоящий из средств обнаружения, системы управления и системы поражения. Когда снаряд или ПТУР подлетает к танку, он обнаруживается при помощи датчиков или радиолокационной системы и происходит отстрел специального боеприпаса, который при помощи силы взрыва, осколков или кумулятивной струи повреждает или полностью разрушает снаряд или противотанковую ракету.

Принцип действия комплекса активной защиты.

Наиболее активно разработки комплексов активной защиты вел Советский Союз. Начиная с 1958 года, было создано несколько КАЗ различного типа. Однако на вооружение один из комплексов активной защиты поступил лишь в 1983 году. Это был КАЗ «Дрозд», который устанавливался на Т-55АД. Впоследствии для более современных основных боевых танков был создан комплекс активной защиты «Арена». А относительно недавно российские конструкторы разработали КАЗ «Афганит», предназначенный для новейших танков и тяжелых БМП на платформе «Армата».

Подобные комплексы создавались и создаются за рубежом. Например, в Израиле. Так как для танков «Меркава» вопрос защиты от ПТУРов и РПГ стоит особенно остро, то именно «Меркавы» из западных ОБТ стали первыми массово оснащаться комплексами активной защиты «Трофи». Также израильтянами был создан КАЗ Iron Fist, который подходит не только для танков, но и для бронетранспортеров и прочей легкой бронетехники.

Дымовые завесы и комплексы оптико-электронного противодействия

Если комплекс активной защиты просто уничтожает подлетающие к танку управляемые противотанковые ракеты, то комплекс оптико-электронного противодействия (или сокращенно КОЭП) действует намного тоньше. Примером такого КОЭП может служить «Штора», устанавливаемая на Т-90, БМП-3 и последних модификациях Т-80. Как же она работает?

Немалая часть современных противотанковых управляемых ракет наводится по лазерному лучу. И когда такой ракетой целятся по танку — датчики КОЭП регистрируют то, что машину облучают лазером, и подают соответствующий сигнал экипажу. В случае необходимости КОЭП также может автоматически отстрелить в нужном направлении дымовую гранату, которая скроет танк в видимом и инфракрасном спектре электромагнитных волн. Также, получив сигнал об облучении лазером, экипаж танка может нажать на нужную кнопку — и КОЭП сам развернет башню танка в том направлении, откуда по нему целятся ракетой с лазерным наведением. Все, что остается сделать наводчику и командиру боевой машины, — обнаружить и уничтожить угрозу.

Но, помимо лазерного луча, множество противотанковых ракет используют для наведения трассер. То есть, в самой ракете в задней части находится источник яркого света определенной частоты. Этот свет улавливает система наведения ПТУРа и корректирует полет ракеты так, чтобы она шла точно в цель. И тут в дело вступают прожекторные установки КОЭП (в игре их можно наблюдать на Т-90). Они могут излучать свет той же частоты, что и трассер противотанковой ракеты, таким образом «обманывая» систему наведения и уводя ракету от танка подальше.

Эти «красные глаза» Т-90 и есть прожекторы КОЭП «Штора».

Экраны и решетки

И последний элемент защиты современной бронетехники, о котором мы расскажем сегодня, — это всевозможные противокумулятивные экраны, решетки и модули дополнительной брони.

Противокумулятивный экран устроен достаточно просто — это преграда из стали, резины или иного материала, установленная на определенном расстоянии от основной брони танка или ББМ. Такие экраны можно наблюдать как на танках Второй мировой войны, так и на более современных образцах бронетехники. Принцип их действия прост: попадая в экран, кумулятивный снаряд преждевременно срабатывает, а кумулятивная струя преодолевает некоторое расстояние в воздухе и достигает основной брони танка существенно ослабленной.

Несколько иначе действуют противокумулятивные решетки. Они изготовлены в виде пластин, развернутых ребром к направлению, откуда может исходить угроза для танка. При столкновении кумулятивного снаряда с элементами решетки последние деформируют корпус снаряда, воронку кумулятивной боевой части и/или взрыватель, тем самым не давая снаряду сработать, а кумулятивной струе появиться.

Противокумулятивные решетки особенно часто устанавливают на легкую бронетехнику — БТР, БМП или истребители танков.

И в завершение — несколько слов про навесную модульную броню. Сама ее идея не нова — еще 70 и более лет назад экипажи добавляли немного защиты там, где ее не хватало. Раньше для этого использовались доски, мешки с песком, листы брони с подбитых вражеских танков или даже бетон. Сегодня же применяются современные полимеры, керамика и прочие материалы, показывающие высокий уровень защиты при малой массе. Кроме того, современная модульная броня сконструирована и изготовлена так, чтобы ее монтаж и демонтаж происходил максимально быстро. Один из примеров такой защиты — навесная броня MEXAS, используемая на танках «Леопард-1» и «Леопард-2», бронетранспортерах М113 и М1126 «Страйкер» и на многих других образцах боевой техники.

На этом все.

Используйте броню правильно, не подставляйте слабые места своих танков под снаряды противника и удачи в боях!

Сценарии будущих войн, включая уроки, выученные в Афганистане, будут создавать асимметрично-смешанные вызовы для солдат и их амуниции. Как результат, необходимость в более прочной и в то же время более легкой броне продолжит увеличиваться. Cовременные виды баллистической защиты для пехотинцев, автомобилей, летательных аппаратов и кораблей настолько разнообразны, что вряд ли можно охватить их все в рамках одной небольшой статьи. Остановимся на обзоре последних инноваций в этой области и очертим основные направления их развития. Композитное волокно - основа для создания композитных материалов. Наиболее прочные конструкционные материалы в настоящее время делаются из волокон, к примеру из углеволокна или сверхвысокомолекулярного полиэтилена (СВМПЭ, UHMWPE).

В течение последних десятилетий было создано или усовершенствовано много композитных материалов, известных под торговыми марками KEVLAR, TWARON, DYNEEMA, SPECTRA. Они изготовлены путем химического связывания или волокон параарамида, или высокопрочного полиэтилена.

Арамиды (Aramid) - класс термостойких и прочных синтетических волокон. Название происходит от словосочетания «ароматические полиамиды» (aromatic polyamide). В таких волокнах цепочки молекул строго ориентированы в определенном направлении, что позволяет управлять их механическими характеристиками.

К ним же принадлежат метаарамиды (например, NOMEX). Большую часть составляют сополиамиды, известные под маркой Тechnora производства японского химического концерна Teijin. Арамиды допускают большее разнообразие направлений волокон по сравнению с СВМПЭ. Параарамидные волокна, такие как KEVLAR, TWARON и Heracron, имеют великолепную прочность при минимальном весе.

Высокопрочное полиэтиленовое волокно DYNEEMA, выпускаемое компанией DSM Dyneema, считается самым прочным в мире. Оно в 15 раз прочнее стали и на 40% прочнее арамидов при том же весе. Это единственный композит, способный защитить от 7,62-мм пули АК-47.

KEVLAR - широко известная зарегистрированная торговая марка параарамидного волокна. Разработанное компанией DuPont в 1965 г., волокно выпускается в виде нитей или ткани, которые используются в качестве основы при создании композитных пластиков. При равном весе KEVLAR в пять раз прочнее стали, при этом более гибок. Для изготовления так называемых «мягких бронежилетов» используется KEVLAR XP, такая «броня» состоит из десятка слоев мягкой ткани, способной затормозить колюще-режущие предметы и даже пули с низкой энергетикой.

NOMEX - еще одна разработка DuPont. Огнеупорное волокно из метаарамида было разработано еще в 60-е гг. прошлого столетия и впервые представлено в 1967 году.

Полибензоимидазол (PBI) - синтетическое волокно с чрезвычайно высокой температурой плавления, которое практически невозможно поджечь. Используется для защитных материалов.

Материал под маркой Rayon представляет собой переработанные волокна целлюлозы. Поскольку Rayon создан на основе натуральных волокон, он не является ни синтетическим, ни натуральным.

SPECTRA - композитное волокно, выпускаемое компанией Honeywell. Является одним из прочнейших и легчайших волокон в мире. Используя фирменную технологию SHIELD, компания вот уже больше двух десятилетий производит баллистическую защиту для войсковых и полицейских подразделений на основе материалов SPECTRA SHIELD, GOLD SHIELD и GOLD FLEX. SPECTRA - ярко-белое полиэтиленовое волокно, устойчивое к химическим повреждениям, свету и воде. По заявлениям производителя, этот материал прочнее стали и на 40% прочнее арамидного волокна.

TWARON - торговое название прочного термоустойчивого параарамидного волокна производства компании Teijin. По оценкам производителя, использование материала для защиты бронетехники может снизить массу брони на 30–60% по сравнению с броневой сталью. Ткань Twaron LFT SB1, выпущенная по фирменной технологии ламинирования, состоит из нескольких слоев волокон, расположенных под различными углами друг к другу и связанных между собой наполнителем. Она используется для производства легких гибких бронежилетов.

Сверхвысокомолекулярный полиэтилен (СВМПЭ, UHMWPE), также называемый высокомолекулярным полиэтиленом - класс термопластичных полиэтиленов. Синтетические волоконные материалы под марками DYNEEMA и SPECTRA выдавливаются из геля через специальные фильеры, которые придают волокнам нужное направление. Волокна состоят из сверхдлинных цепочек с молекулярной массой, достигающей 6 млн. СВМПЭ обладают высокой устойчивостью к агрессивным средам. К тому же материал является самосмазывающимся и чрезвычайно устойчив к истиранию - до 15 раз больше, чем углеродистая сталь. По коэффициенту трения сверхвысокомолекулярный полиэтилен сравним с политетра­фторэтиленом (тефлоном), но более износостоек. Материал не имеет запаха, вкуса, нетоксичен.

Комбинированная броня

Современная комбинированная броня может быть использована для индивидуальной защиты, бронирования транспортных средств, военно-морских судов, самолетов и вертолетов. Продвинутые технологии и небольшой вес позволяют создать бронезащиту с уникальными характеристиками. К примеру, компания Ceradyne, недавно вошедшая в состав концерна 3M, заключила контракт стоимостью $80 млн с Корпусом морской пехоты США на поставку 77 тыс. высокозащищенных шлемов (Enhanced Combat Helmets, ECH) как часть единой программы по замене средств защиты в Армии США, ВМС и КМП. В шлеме широко применяется сверхвысокомолекулярный полиэтилен вместо арамидных волокон, использовавшихся при изготовлении шлемов предыдущего поколения. Enhanced Combat Helmets похож на Advanced Combat Helmet, состоящий на вооружении в настоящий момент, но тоньше его. Шлем обеспечивает такую же защиту от пуль стрелкового оружия и осколков, что и предыдущие образцы.

Сержант Кайл Кинан (Kyle Keenan) демонстрирует вмятины от попаданий пистолетных 9-мм пуль с близкой дистанции на своем шлеме Advanced Combat Helmet, полученные в июле 2007 г. во время операции в Ираке. Шлем из композитного волокна способен эффективно защитить от пуль стрелкового оружия и осколков снарядов.

Человек - не единственное, что требует защиты отдельных жизненно важных органов на поле боя. К примеру, самолеты нуждаются в частичном бронировании, прикрывающем экипаж, пассажиров и бортовую электронику от огня с земли и поражающих элементов боевых частей ракет систем ПВО. В последние годы в этой области было сделано немало важных шагов: разработана инновационная авиационная и корабельная броня. В последнем случае применение мощной брони не получило широкого распространения, однако имеет решающее значение при оснащении судов, проводящих операции против пиратов, наркоторговцев и торговцев людьми: такие корабли сейчас подвергаются атакам не только стрелкового оружия разного калибра, но и обстрелам из ручных противотанковых гранатометов.

Изготовлением защиты для крупногабаритных транспортных средств занимается подразделение Advanced Armour компании TenCate. Ее серия авиационной брони создана, чтобы обеспечить максимальную защиту при минимальном весе, допускающем ее установку на летательные аппараты. Это достигается применением в линейках брони TenCate Liba CX и TenCate Ceratego CX - наилегчайших из существующих материалов. При этом баллистическая защита брони достаточно высока: к примеру, для TenCate Ceratego она достигает 4-го уровня по стандарту STANAG 4569 и выдерживает множественные попадания. В конструкции бронелистов применяются различные комбинации металлов и керамики, армирование волокнами арамидов, высокомолекулярного полиэтилена, а также угле- и стеклопластики. Спектр летательных аппаратов, использующих бронирование от TenCate, очень широк: от легкого многофункционального турбовинтового Embraer A-29 Super Tucano до «транспортника» Embraer KC-390.

TenCate Advanced Armour также изготавливает бронирование для малых и больших военных кораблей и гражданских судов. Бронированию подлежат критически важные части бортов, а также судовые помещения: оружейные погреба, капитанский мостик, информационный и коммуникационный центры, системы вооружения. Недавно компания представила т. н. тактический морской щит (Tactical Naval Shield) для защиты стрелка на борту судна. Он может быть развернут для создания импровизированной огневой точки или снят в течение 3 минут.

Комплекты авиационной брони LAST от компании QinetiQ North America исповедуют подход, применяемый в навесной броне наземных транспортных средств. Части летательного аппарата, требующие защиты, могут быть усилены в течение одного часа силами экипажа, при этом необходимый крепеж уже входит в поставляемые комплекты. Таким образом, могут быть оперативно модернизированы транспортные самолеты Lockheed C-130 Hercules, Lockheed C-141, McDonnell Douglas C-17, а также вертолеты Sikorsky H-60 и Bell 212, если условия выполнения миссии предполагают возможность обстрела из легкого стрелкового оружия. Броня выдерживает попадание бронебойной пули калибра 7,62 мм. Защита одного квадратного метра весит всего 37 кг.

Прозрачная броня

Традиционный и наиболее распространенный материал бронирования окон транспортных средств - закаленное стекло. Конструкция прозрачных «бронелистов» проста: между двумя толстыми стеклянными блоками запрессовывается прослойка из прозрачного ламината-поликарбоната. При попадании пули во внешнее стекло основной удар принимают на себя внешняя часть стеклянного «сэндвича» и ламинат, при этом стекло растрескивается характерной «паутиной», хорошо иллюстрируя направление рассеяния кинетической энергии. Слой поликарбоната препятствует проникновению пули во внутренний стеклянный слой.

Пулестойкое стекло часто называют «пуленепробиваемым». Это ошибочное определение, так как нет стекол разумной толщины, способных противостоять бронебойной пуле калибра 12,7 мм. Современная пуля такого типа имеет медную оболочку и сердечник из твердого плотного материала - например, обедненного урана или карбида вольфрама (по твердости последний сравним с алмазом). Вообще пулестойкость закаленного стекла зависит от многих факторов: калибр, тип, скорость пули, угол встречи с поверхностью и др., поэтому толщину пулестойких стекол зачастую выбирают с двойным запасом. В то же время его масса также увеличивается вдвое.

PERLUCOR - материал с высокой химической чистотой и выдающимися механическими, химическими, физическими и оптическими свойствами

Пулестойкое стекло имеет свои известные недостатки: оно не защищает от многочисленных попаданий и имеет слишком большой вес. Исследователи считают, что будущее в этом направлении принадлежит так называемому «прозрачному алюминию». Этот материал представляет собой специальный зеркально отполированный сплав, который вдвое легче и в четыре раза прочнее закаленного стекла. В его основе - оксинитрид алюминия - соединение алюминия, кислорода и азота, которое представляет собой прозрачную керамическую твердую массу. На рынке он известен под торговой маркой ALON. Производят его путем спекания изначально совершенно непрозрачной порошкообразной смеси. После того как смесь расплавится (температура плавления оксинитрида алюминия - 2140°C), ее резко охлаждают. Полученная твердая кристаллическая структура имеет такую же устойчивость к царапинам, как сапфир, то есть она практически не подвержена царапинам. Дополнительная полировка не только делает ее более прозрачной, но и укрепляет поверхностный слой.

Современные пулестойкие стекла изготавливаются трехслойными: снаружи расположена панель из оксинитрида алюминия, затем идет закаленное стекло, а завершается все слоем прозрачного пластика. Такой «сэндвич» не только прекрасно выдерживает попадания бронебойных пуль из ручного стрелкового оружия, но и способен противостоять более серьезным испытаниям, таким как огонь из пулемета калибра 12,7 мм.

Традиционно используемое в бронетехнике пулестойкое стекло царапает даже песок во время песчаных бурь, не говоря уже о воздействии на него осколков самодельных взрывных устройств и пуль, выпущенных из АК-47. Прозрачная «алюминиевая броня» гораздо устойчивее к подобному «выветриванию». Фактор, сдерживающий применение такого замечательного материала - его высокая стоимость: примерно в шесть раз выше, чем у­ закаленного стекла. Технология производства «прозрачного алюминия» разработана компанией Raytheon и сейчас предлагается под названием Surmet. При высокой стоимости этот материал все-таки дешевле сапфира, который применяется там, где нужна особенно высокая прочность (полупроводниковые приборы) или устойчивость к царапинам (стекла наручных часов). Поскольку для выпуска прозрачной брони привлекаются все большие производственные мощности, а оборудование позволяет выпускать листы все большей площади, ее цена в итоге может существенно снизиться. К тому же технологии производства все время совершенствуются. Ведь свойства такого «стекла», не пасующего перед обстрелом из пулемета БТР, слишком привлекательны. А если вспомнить, насколько «алюминиевая броня» снижает вес бронемашин, сомнений не остается: за этой технологией - будущее. Для примера: при третьем уровне защиты по стандарту STANAG 4569 типичное остекление площадью 3 кв. м будет весить около 600 кг. Такой излишек сильно влияет на ходовые качества бронемашины и, в итоге, на ее живучесть на поле боя.

Есть и другие компании, занимающиеся разработками в области прозрачной брони. CeramTec-ETEC предлагает PERLUCOR - стеклокерамику с высокой химической чистотой и выдающимися механическими, химическими, физическими и оптическими свойствами. Прозрачность материала PERLUCOR (свыше 92%) позволяет использовать его везде, где находит применение закаленное стекло, при этом он в три-четыре раза тверже стекла, а также выдерживает экстремально высокие (до 1600°C) температуры, воздействие концентрированных кислот и щелочей.

Прозрачная керамическая броня IBD NANOTech отличается меньшим весом, чем закаленное стекло той же прочности, - 56 кг/кв. м против 200

Компания IBD Deisenroth Engineering разработала прозрачную керамическую броню, сопоставимую по свойствам с непрозрачными образцами. Новый материал легче бронестекла примерно на 70% и может, по заявлениям IBD, выдерживать множественные попадания пуль в одни и те же области. Разработка является побочным продуктом процесса создания линейки бронекерамики IBD NANOTech. В процессе разработки компания создала технологии, позволяющие склеивать «мозаику» большой площади из мелких бронеэлементов (технология Mosaic Transparent Armour), а также ламинировать склейки укрепляющими подложками из фирменных нановолокон Natural NANO-Fibre. Такой подход дает возможность выпускать прочные прозрачные бронепанели, которые значительно легче традиционных из закаленного стекла.

Израильская компания Oran Safety Glass нашла свой путь в технологиях изготовления прозрачных бронелистов. Традиционно на внутренней, «безопасной» стороне стеклянной бронепанели расположен армирующий слой пластика, предохраняющий от разлетающихся осколков стекла внутрь бронемашины при попадании в стекло пуль и снарядов. Такой слой может постепенно покрываться царапинами при неаккуратных протирках, теряя прозрачность, а также имеет свойство отслаиваться. Запатентованная технология ADI укрепления слоев брони не требует такого армирования при соблюдении всех норм безопасности. Другая инновационная технология от OSG - ROCKSTRIKE. Хотя современная многослойная прозрачная броня защищена от ударов бронебойных пуль и снарядов, она подвержена растрескиванию и царапанью от попадания осколков и камней, а также постепенному расслоению бронелиста, - в итоге дорогостоящую бронепанель придется заменить. Технология ROCKSTRIKE является альтернативой армированию металлической сеткой и предохраняет стекло от повреждений твердыми предметами, летящими со скоростью до 150 м/с.

Защита пехотинцев

Современный бронежилет комбинирует специальные защитные ткани и твердые броневставки для дополнительной защиты. Такая комбинация может защитить даже от винтовочных 7,62-мм пуль, однако современные ткани уже способны самостоятельно остановить пистолетную пулю калибра 9 мм. Основной задачей баллистической защиты является поглощение и рассеяние кинетической энергии удара пули. Поэтому защита делается многослойной: при попадании пули ее энергия тратится на растяжение длинных прочных композитных волокон по всей площади бронежилета в нескольких слоях, изгиб композитных пластин, и в итоге скорость пули падает с сотен метров в секунду до нуля. Чтобы замедлить более тяжелую и острую винтовочную пулю, летящую со скоростью порядка 1000 м/с, наряду с волокнами требуются вставки из твердых металлических или керамических пластин. Защитные пластины не только рассеи­вают и поглощают энергию пули, но и притупляют ее наконечник.

Проблемой для применения композитных материалов в качестве защиты может стать чувствительность к температуре, повышенной влажности и соленому поту (некоторых из них). По мнению экспертов, это может вызвать старение и разрушение волокон. Поэтому в конструкции таких бронежилетов необходимо предусмотреть защиту от влаги и хорошую вентиляцию.

Важные работы ведутся и в области эргономичности бронежилетов. Да, нательная броня защищает от пуль и осколков, но может быть тяжелой, громоздкой, стеснять движения и замедлить передвижение пехотинца настолько, что его беспомощность на поле боя может стать едва ли не большей опасностью. Но в 2012 году в вооруженных силах США, где, согласно статистике, каждый седьмой военнослужащий - женского пола, начались испытания бронежилетов, разработанных специально для женщин. До этого военнослужащие-женщины носили мужскую «броню». Новинка отличается уменьшенной длиной, что предотвращает натирание бедер при беге, а также регулируется в области груди.

Бронежилеты, использующие вставки из керамической композитной брони от Ceradyne, экспонируются на мероприятии Special Operations Forces Industry Conference 2012

Решение другого недостатка - значительного веса бронежилета - может произойти с началом применения т. н. неньютоновских жидкостей в качестве «жидкой брони». Неньютоновская жидкость- такая, вязкость которой зависит от градиента скорости ее течения. В настоящий момент большинство бронежилетов, как писалось выше, использует комбинацию мягких защитных материалов и твердых броневставок. Последние и создают основной вес. Если заменить их на контейнеры с неньютоновской жидкостью, это и облегчило бы конструкцию, и сделало бы ее более гибкой. В разное время разработкой защиты на базе такой жидкости вели разные компании. Британское отделение BAE Systems даже представило работающий образец: пакеты со специальным гелем Shear Thickening Liquid, или пулестойким кремом, обладали примерно такими же показателями защиты, что 30-слойный кевларовый бронежилет. Очевидны и недостатки: такой гель после попадания пули просто вытечет через пулевое отверстие. Однако разработки в этой области продолжаются. Возможно использование технологии там, где требуется защита от удара, а не пуль: к примеру, сингапурская компания Softshell предлагает спортивную экипировку ID Flex, спасающую от травм и созданную на основе неньютоновской жидкости. Вполне реально применять такие технологии для внутренних амортизаторов шлемов или элементов пехотной брони - это может уменьшить вес защитного снаряжения.

Для создания легких бронежилетов компания Ceradyne предлагает броневставки, изготовленные из карбидов бора и кремния, соединенных горячим прессованием, в которые впрессованы волокна композитного материала, ориентированные специальным образом. Такой материал выдерживает множественные попадания, при этом твердые керамические соединения разрушают пулю, а композиты рассеивают и гасят ее кинетическую энергию, обеспечивая структурную целостность бронеэлемента.

Существует природный аналог волоконных материалов, который может быть применим для создания чрезвычайно легкой, упругой и прочной брони, - паутина. К примеру, волокна паутины крупного мадагаскарского паука Дарвина (Caerostris darwini) обладают ударной вязкостью, до 10 раз превосходящей аналогичный показатель кевларовых нитей. Создать искусственное волокно, схожее по свойствам с такой паутиной, позволила бы расшифровка генома паучьего шелка и создание специального органического соединения для изготовления сверхпрочных нитей. Остается надеяться, что биотехнологии, активно развивающиеся последние годы, предоставят когда-нибудь такую возможность.

Броня для наземной техники

Продолжает повышаться и защищенность бронетехники. Одним из распространенных и проверенных способов защиты от снарядов противотанковых гранатометов является применение противокумулятивного экрана. Американская компания АmSafe Bridport предлагает свой вариант - гибкие и легкие сетки Tarian, выполняющие те же функции. Помимо малого веса и простоты установки такое решение имеет еще одно преимущество: в случае повреждения сетка легко заменяется силами экипажа, не требуя применения сварки и слесарных работ в случае выхода из строя традиционных металлических решеток. Компания заключила контракт на поставку Минобороны Соединенного Королевства нескольких сотен таких систем в части, находящиеся сейчас в Афганистане. Аналогичным образом работает комплект Tarian QuickShield, предназначенный для оперативного ремонта и заделывания брешей в традиционных стальных решетчатых экранах танков и БТР. QuickShield поставляется в вакуумной упаковке, минимально занимая обитаемый объем бронетехники, и также проходит сейчас обкатку в «горячих точках».

Противокумулятивные экраны TARIAN компании АmSafe Bridport могут быть легко установлены и отремонтированы

Уже упоминавшаяся выше компания Ceradyne предлагает модульные комплекты бронирования DEFENDER и RAMTECH2 для тактических колесных автомобилей, а также грузовиков. Для легких бронеавтомобилей используется композитная броня, максимально защищая экипаж при жестких ограничениях по размеру и весу бронепластин. Ceradyne работает в тесном контакте с производителями бронетехники, давая ее конструкторам возможность в полной мере пользоваться своими разработками. Примером такой глубокой интеграции может служить бронетранспортер BULL, совместная разработка Ceradyne, Ideal Innovations и Oshkosh в рамках тендера MRAP II, объявленного командованием Корпуса морской пехоты США в 2007 г. Одним из его условий было обеспечение защиты экипажа бронемашины от направленных взрывов, случаи применения которых участились в то время в Ираке.

Германская компания IBD Deisenroth Engineering, специализирующаяся на разработке и изготовлении средств защиты объектов военной техники, разработала концепцию Evolution Survivability («Эволюция живучести») для средних бронемашин и основных боевых танков. Комплексная концепция использует последние разработки в области наноматериалов, используемые в линейке апгрейдов защиты IBD PROTech и уже проходящие испытания. На примере модернизации систем защиты ОБТ Leopard 2 это противоминное усиление днища танка, боковые защитные панели для противодействия самодельным взрывным устройствам и придорожным минам, защита крыши башни от боеприпасов воздушного подрыва, системы активной защиты, поражающие управляемые противотанковые ракеты на подлете и др.

Бронетранспортер BULL - пример глубокой интеграции защитных технологий Ceradyne

Концерн Rheinmetall, один из крупнейших производителей оружия и бронемашин, предлагает собственные комплекты апгрейда баллистической защиты различных транспортных средств серии VERHA - Versatile Rheinmetall Armour, «Универсальная броня Rheinmetall». Диапазон ее применения чрезвычайно широк: от броневставок в одежду до защиты военных кораблей. Используются как новейшие керамические сплавы, так и арамидные волокна, высокомолекулярный полиэтилен и др.

Изобретение относится к области разработки средств защиты техники от бронебойных пуль.

Прогресс в создании высокоэффективных поражающих средств и определяемое им повышение требований к бронезащите обусловило создание многослойной комбинированной брони. Идеология комбинированной защиты заключается в сочетании нескольких слоев разнородных материалов с приоритетными свойствами, включающем фронтальный слой из особотвердых материалов и высокопрочный энергоемкий тыльный слой. В качестве материалов фронтального слоя используют керамику высшей категории твердости, при этом задача ее сводится к разрушению закаленного сердечника, вследствие напряжений, возникающих при их высокоскоростном взаимодействии. Тыльный удерживающий слой предназначен для погашения кинетической энергии и блокировки осколков, образующихся в результате ударного взаимодействия пули с керамикой.

Известны технические решения, предназначенные для защиты поверхностей, имеющих сложный геометрический рельеф, - патенты США №5972819 А, 26.10.1999; №6112635 А, 05.09.2000, №6203908 В1, 20.03.2001; патент РФ №2329455, 20.07.2008. Общим в этих решениях является использование в фронтальном высокотвердом слое малоразмерных керамических элементов, как правило, в виде тел вращения, наибольшее распространение среди которых получили элементы в виде цилиндров. При этом эффективность работы керамики повышают за счет использования выпуклых покатых торцов с одной или обеих сторон цилиндров. В этом случае при встрече поражающего средства с овальными поверхностями керамики действует механизм увода или сбивания пули с траектории полета, существенно затрудняющий работу по преодолению керамической преграды. Кроме того, использование в этом случае малоразмерной керамики обеспечивается более высокий по сравнению с плиточным вариантом уровень живучести за счет существенного уменьшения зоны поражения и весьма важная для практики частичная локальная ремонтопригодность конструкций.

Вместе с тем высокая эффективность работы многослойной брони определяется не только свойствами материалов основных слоев, но и условиями их взаимодействия при высокоскоростном ударе, в частности акустическим контактом керамического и тыльного слоев, обеспечивающим возможность частичной передачи упругой энергии в тыльную подложку.

Современные представления о механизме ударного взаимодействия бронебойного сердечника и комбинированной защиты состоят в следующем. На первоначальном этапе при встрече сердечника с броней внедрения его в керамику не происходит ввиду того, что последняя обладает существенно большей твердостью по сравнению с таковой у сердечника, далее происходит разрушение сердечника за счет генерирования в нем высоких напряжений, возникающих при торможении о керамическую преграду, и определяется сложными волновыми процессами, происходящими при этом. Степень разрушения сердечника в основном определяется временем взаимодействия до момента разрушения керамики, при этом акустический контакт между слоями играет ключевую роль в увеличении этого времени за счет частичной передачи упругой энергии в тыловой слой с последующим поглощением и рассеиванием ее.

Известно техническое решение, изложенное в патенте США №6497966 В2, 24.12.2002, где предложена многослойная композиция, состоящая из лицевого слоя, выполненного из керамики или сплава с твердостью выше 27 HRC, промежуточного слоя из сплавов с твердостью менее 27HRC и тыльного слоя из полимерного композиционного материала. При этом все слои скреплены между собой полимерным намоточным материалом.

По сути дела, в этом случае речь идет о двухслойной композиции разрушающего фронтального слоя, изготовленной из материалов, отличающихся по твердости. В рекомендациях авторов этого технического решения предлагается в менее твердом слое использовать углеродистые стали, при этом вопросы об энергетическом обмене фронтального и тыльного слоев не рассматриваются, а предложенный класс материалов не может по своим свойствам служить активным участником переноса упругой энергии в тыловой слой.

Решение вопросов взаимодействия фронтального и тыловых слоев предложено в патенте РФ №2329455, 20.07.2008, который по совокупности общих признаков является наиболее близким аналогом к предлагаемому изобретению и выбран в качестве прототипа. Авторы предлагают использование промежуточного слоя в виде воздушного зазора или упругого материала.

Однако предложенные решения обладают рядом существенных недостатков. Так, на начальном этапе взаимодействия с керамикой упругий волновой предвестник разрушения достигает тыльной поверхности ее и вызывает ее перемещение.

При схлопывании зазора удар внутренней поверхности керамики о подложку может вызывать досрочное разрушение керамики и, следовательно, ускоренное пробитие керамической преграды. Чтобы избежать этого, необходимо или существенно увеличивать толщину керамики, что приведет к неприемлемому увеличению массы брони, или увеличивать толщину зазора, что снизит эффективность защиты из-за раздельного (поэтапного) разрушения отдельных слоев.

Во втором варианте авторы прототипа предлагают поместить между слоями упругую прослойку, которая должна предохранить керамику от разрушения при ударе о тыльную броню. Однако из-за низкого характеристического импеданса упругого материала прослойка не сможет обеспечить акустического контакта слоев, что приведет к локализации энергии в хрупкой керамике и ее досрочному разрушению.

Задачей, на решение которой направлено изобретение, является повышение бронестойкости комбинированной брони.

Техническим результатом изобретения является повышение бронестойкости комбинированной брони за счет увеличения плотности акустического контакта между слоями.

Недостатки прототипа можно устранить, если промежуточный слой будет выполнен из пластичного материала с определенными свойствами, обеспечивающего акустический контакт слоев и передачу упругой энергии в тыл. Вышеуказанное достигается если предел текучести промежуточного слоя составляет 0,05-0,5 от предела текучести материала тыльного слоя.

При наличии промежуточного слоя, выполненного из пластичного материала с пределом текучести 0,05-0,5 от предела текучести материала тыльного слоя, в процессе перемещения керамики под действием упругого волнового предвестника происходит устранение неплотностей и мелких зазоров в прилегающих слоях благодаря пластической деформации последнего. Кроме того, под действием волн напряжений возрастает его плотность, а следовательно, его характеристический импеданс. Все это в совокупности приводит к увеличению плотности акустического контакта между слоями и повышает долю энергии, передаваемой и рассеиваемой в тыльном слое. В результате, за счет наличия промежуточного слоя, выполненного из пластичного материала с пределом текучести 0,05-0,5 от предела текучести материала тыльного слоя, энергия ударного взаимодействия распределяется по всем слоям комбинированной брони, при этом эффективность ее работы существенно возрастает, так как время взаимодействия до разрушения керамики повышается, что, в свою очередь, обеспечивает более полное разрушение высокотвердого сердечника.

Промежуточный слой с пределом текучести более 0,5 предела текучести тыльного слоя не обладает достаточной пластичностью и не приводит к желаемому результату.

Выполнение промежуточного слоя из пластичного материала с пределом текучести менее 0,05 от значения предела текучести материала тыльного слоя не приведет к желаемому результату, так как его выдавливание в процессе ударного взаимодействия происходит слишком интенсивно и описанное выше влияние на механику процессов взаимодействия не оказывается.

Предложенное техническое решение было опробовано в условиях испытательного центра НПО СМ г. Санкт-Петербург. Керамический слой в опытном образце 200×200 мм был изготовлен из корундовых цилиндров марки AJI-1 диаметром 14 мм и высотой 9,5 мм. Тыльный слой изготовили из броневой стали марки Ц-85 (предел текучести = 1600 МПа) толщиной 3 мм. Промежуточный слой изготовили из алюминиевой фольги марки АМЦ (предел текучести=120 МПа) толщиной 0,5 мм. Соотношение пределов текучести промежуточного и тыльного слоев составляет 0,075. Керамические цилиндры и все слои были склеены между собой полимерным связующим на основе полиуретана.

Результаты натурных испытаний показали, что предложенный вариант комбинированной бронезащиты имеет бронестойкость на 10-12% выше по сравнению с прототипом, где промежуточный слой выполнен из упругого материала.

Многослойная комбинированная броня, содержащая высокотвердый фронтальный слой из керамического блока или элементов, соединенных связующим в монолит, высокопрочный энергоемкий тыльный слой и промежуточный слой, отличающаяся тем, что промежуточный слой выполнен из пластичного материала, имеющего предел текучести 0,05-0,5 от предела текучести тыльного слоя.

Похожие патенты:

Изобретение относится к системам реактивной защиты для защиты неподвижных и движущихся объектов от поражающих элементов. Система неподвижно или подвижно установлена или может устанавливаться на обращенной к поражающему элементу (3) стороне подлежащего защите объекта (1) и содержит по меньшей мере одну расположенную под некоторым углом (2) наклона относительно направления поражающего элемента защитную поверхность (4).

Изобретение относится к прокатному производству и может быть использовано при изготовлении броневых листов из (α+β)-титанового сплава. Способ изготовления броневых листов из (α+β)-титанового сплава включает подготовку шихты, выплавку слитка состава, мас.%: 3,0-6,0 Al; 2,8-4,5 V; 1,0-2,2 Fe; 0,3-0,7 Mo; 0,2-0,6 Cr; 0,12-0,3 О; 0,010-0,045 С; <0,05 N; <0,05 Н;<0,15 Si; <0,8 Ni; остальное - титан.

Группа изобретений относится к области транспортного машиностроения. Способ установки стекол при бронировании автомобиля по первому варианту заключается в том, что бронированные стекла устанавливаются за штатными при помощи рамки, соединяемой с заходной частью стекла и повторяющей форму стекла, и крепежных элементов.

Изобретение относится к бронированным объектам, преимущественно к электрифицированным танкам с динамической (реактивной) броневой защитой. Бронированный объект содержит защитное устройство динамического типа, которое включает в себя элементы с корпусом и крышкой, установленные на части площади внешней поверхности объекта.

Группа изобретений относится к производству многослойных гибких броневых материалов для средств индивидуальной защиты. Способ противодействия многослойной брони движению пули, осколка заключается в том, что чередуют слои высокомодульных волокон с веществами, усиливающими противодействие, которые размещают в ячейках, образованных слоями высокомодульных волокон.

Изобретение относится к оборонной технике и предназначено для проведения испытаний лицевых металлических преград - основы гетерогенных защитных структур. Способ включает выстреливание бойков со скоростью, большей скорости удара, определение и замер глубины ударного внедрения бойка диаметром d в поверхность металла h (глубина каверны). При этом скорость удара больше или меньше ожидаемой минимальной скорости сплошных пробитий. Определение предельной (минимальной) скорости сплошных пробитий, выше которой получаются сплошные пробития, а ниже - только закономерные пробития, на фоне линейной зависимости малых значений глубины каверны h от скорости удара; преимущества квантованных скоростей удара; однозначных и малых двузначных квантовых чисел n для всех скоростей, на которых получены пробития или каверны увеличенной глубины. Достигается определение наличия и преимущества квантованных скоростей удара, а также повышение точности определения минимальной скорости сплошных пробитий. 4 ил.

Изобретение относится к военной технике, в частности к конструкции броневой защиты, предназначенной для противодействия кумулятивным боеприпасам. Динамическая защита содержит корпус, в котором расположены две параллельные металлические пластины, детонаторы, равномерно расположенные в зазоре между металлическими пластинами, датчики определения координат проникающей кумулятивной струи, закрепленные на внутренних поверхностях пластин. В зазоре между металлическими пластинами расположены сосуды, заполненные жидкостью, внутри сосудов жестко закреплены детонаторы, выполненные в виде управляемых электрических разрядников, силовые электроды которых соединены проводами с выходом электрического накопителя энергии, а поджигающие электроды электрически соединены с выходом генератора поджигающих импульсов, вход которого электрически соединен с датчиками определения координат кумулятивной струи. Достигается повышение надежности работы динамической защиты. 1 ил.

Изобретение относится к средствам защиты техники и экипажа от пуль, осколков и гранатометных гранат. Защитный композитный материал содержит сэндвич, включающий в себя по меньшей мере три слоя, склеенных между собой. Первый и второй слои сэндвича включают в себя по меньшей мере два препрега и уголки титанового сплава или алюминиевого сплава. Третий слой защитного композита имеет сотовую конструкцию и изготавливается из полиуретана. Первый и второй слои сэндвича включают в себя монолиты, образованные из углового профиля. Полки углового профиля расположены под углом 45° к плоскости рабочей поверхности защитного композита. Уголки титанового сплава или алюминиевого сплава соединены между собой по меньшей мере двумя препрегами. Волокна препрега содержат корундовые нанотрубки на поверхности волокна из полиэтиленовой нити, или из стеклонити, или из базальтовой нити, или из ткани, или жгута, или ленты. Достигается повышение защитных свойств за счет конструкции брони. 3 з.п. ф-лы, 1 ил.

Изобретение относится к бронированным объектам, главным образом к танкам с динамической броневой защитой, и одновременно к средствам маскировки военных объектов с помощью маскировочного покрытия, закрепленного на поверхности объекта. Защитное устройство бронированного военного объекта содержит съемно закрепляемые на участках брони объекта маскировочные квадратные элементы-модули с камуфляжным рисунком в цветовом ассортименте и с выбором той или иной индивидуальной четырехпозиционной ориентацией. В устройстве предусмотрены распределенные по поверхности объекта элементы динамической защиты со съемными квадратными крышками, а маскировочные элементы-модули выполнены в виде жестких пластин, взаимозаменяемых с упомянутыми крышками элементов динамической защиты, с возможностью оперативного изменения камуфляжного рисунка путем замены и/или перестановки двухфункциональных, таким образом, элементов-модулей между элементами динамической защиты. Достигается оперативность замены средств маскировки путем частного применения принципа многофункциональности узлов и деталей машин к элементам динамической защиты и средств маскировки. 5 з.п. ф-лы, 4 ил.

Изобретение относится к области измерительной техники и может быть использовано для контроля качества композитных броневых преград. Заявлено устройство теплового контроля качества композитных броневых преград на основе анализа энергии поглощения поражающего элемента, включающее устройство для стрельбы, расположенное между подложкой и устройством для стрельбы на траектории полета поражающего элемента устройство для измерения скорости полета поражающего элемента на выходе устройства для стрельбы, подложку из пластичного материала. Устройство дополнительно снабжено тепловизионной системой, компьютерной системой и устройством регистрации начала полета поражающего элемента. Тепловизионная система расположена таким образом, чтобы поле обзора ее оптической части охватывало место соприкосновения поражающего элемента и композитной броневой преграды. Вход устройства регистрации начала полета поражающего элемента подключен к выходу устройства измерения скорости поражающего элемента на выходе устройства для стрельбы. Выход устройства регистрации начала полета поражающего элемента подключен к входу тепловизионной системы, а выход тепловизионной системы подключен к входу компьютерной системы. Технический результат - повышение информативности и достоверности результатов испытаний. 9 ил.

Изобретение относится к области транспортного машиностроения. Энергопоглощающая структура для защиты днища наземных транспортных средств состоит из внутреннего и наружного слоев защиты, выполненных из броневых и/или конструкционных сплавов. Между слоями защиты расположена прослойка. Прослойка выполнена в виде двух одинаковых рядов U- или W-образных энергопоглощающих профилей, зеркально обращенных друг к другу и сдвинутых на полшага относительно друг друга. Торцевые ребра энергопоглощающих профилей одного ряда опираются на торцевые ребра соседних энергопоглощающих профилей противоположного ряда. Достигается повышение эффективности энергопоглощения при подрыве. 3 ил.

Изобретение относится к области измерительной техники и может быть использовано для контроля качества композитных броневых преград. Способ включает установку броневой преграды перед пластиной из пластичного материала, направление с заданной скоростью поражающего элемента на броневую преграду. Дополнительно регистрируют температурное поле поверхности композитной броневой преграды, имеющей минимальные температурные аномалии, которое принимается за аномальное, определяют пространственное разрешение для регистрации температурного поля, исходя из обнаружения минимальных по размеру температурных аномалий с пространственным периодом, определяемым размерами минимальной температурной аномалии. После воздействия на композитную броневую преграду поражающим элементом с заданной скоростью одновременно измеряют температурное поле в области соприкосновения поражающего элемента с композитной броневой преградой, начиная с момента соприкосновения поражающего элемента с композитной броневой преградой и с противоположной стороны, по отношению к стороне соприкосновения с поражающим элементом, на основании анализа температурного поля, зарегистрированного с двух поверхностей, определяют техническое состояние композитной броневой преграды по вектору характеристик броневой преграды и ее энергию поглощения минимизацией функционала по вектору характеристик контролируемой броневой пластины путем решения системы уравнений и на основании анализа температурного поля определяют энергию поглощения композитной броневой преградой. Раскрыто устройство стендовых испытаний композитных броневых преград. Технический результат - повышение информативности и достоверности результатов испытаний. 2 н. и 3 з.п. ф-лы, 3 ил., 1 табл.

Изобретение относится к стойкому к проникновению изделию, которое может использоваться для производства защитной одежды, такой как бронежилеты, шлемы, а также щитов или элементов брони, а также к способу его производства. Изделие содержит по меньшей мере одну тканую тканевую структуру (3), имеющую термопластические волокна и высокопрочные волокна с прочностью по меньшей мере 1100 МПа, в соответствии со стандартом ASTM D-885. Высокопрочные волокна соединены вместе для формирования тканой ткани (2) тканой тканевой структуры (3), а термопластические волокна имеют массовый процент относительно массы тканой тканевой структуры (3), составляющий от 5 до 35%. Причем термопластические волокна предпочтительно в виде негофрированной ткани (6) лежат на тканой ткани (2) и соединены с тканой тканью (2) основной нитью и/или уточной нитью тканой ткани (2) из высокопрочных волокон. При этом отсутствуют какие-либо дополнительные соединительные нити или нетекстильные соединительные средства для соединения между тканой тканью (2) и термопластическими волокнами. Стойкое к проникновению изделие обладает свойствами защиты от удара и/или антибаллистическими свойствами. 3 н. и 11 з.п. ф-лы, 7 ил.

Изобретение относится к пуленепробиваемым композитным изделиям, характеризующимся улучшенным сопротивлением к изнаночной деформации. Пуленепробиваемое изделие содержит вакуумную панель, которая состоит из первой поверхности, второй поверхности и корпуса. Вакуумная панель ограничивает по меньшей мере часть внутреннего объема, в котором создают разрежение. Пуленепробиваемое изделие содержит по меньшей мере одно пуленепробиваемое основание, которое соединяют с первой или второй поверхностью вакуумной панели. Пуленепробиваемое основание содержит волокна и/или ленты с удельной прочностью приблизительно 7 г/денье или более и модулем упругости при растяжении приблизительно 150 г/денье или более. Также пуленепробиваемое основание изготавливают из жесткого материала не на основе волокон или лент. Предлагается также способ формирования пуленепробиваемого изделия, при котором пуленепробиваемое основание располагают так, чтобы оно находилось с внешней стороны пуленепробиваемого изделия, а указанную вакуумную панель располагают позади указанного по меньшей мере одного пуленепробиваемого основания для того, чтобы принять любую ударную волну, которая возникает в результате удара поражающего элемента об указанное пуленепробиваемое основание. Обеспечивается ослабление воздействия ударных волн, генерируемых в результате ударного воздействия поражающего элемента, снижение величины изнаночной деформации, предотвращение или минимизация травм от запредельного действия пуль. 3 н. и 7 з.п. ф-лы, 9 ил., 2 табл., 19 пр.

Группа изобретений относится к области измерительной техники, а именно к способу контроля качества композитных броневых преград из ткани и устройству для его осуществления. Способ включает установку композитной броневой преграды перед пластиной из пластичного материала, направление с заданной скоростью поражающего элемента на броневую преграду и определение энергии поглощения поражающего элемента. С момента взаимодействия броневой преграды и поражающего элемента регистрируют одновременно два пространственных поля на поверхности броневой преграды: температурное поле поверхности броневой преграды и поле видеоизображения поверхности. Накладывают контур видеоизображения на температурное поле, формируют новое измеренное температурное поле, а энергию поглощения композитной броневой преградой определяют на основе анализа нового температурного поля. Раскрыто устройство контроля качества композитных броневых преград из ткани для осуществления способа. Достигается повышение информативности и достоверности результатов контроля. 2 н. и 1 з.п. ф-лы, 5 ил.

Изобретение относится к области разработки средств защиты техники от бронебойных пуль. Многослойная комбинированная броня содержит высокотвердый фронтальный слой из керамического блока или элементов, соединенных связующим в монолит, высокопрочный энергоемкий тыльный слой и промежуточный слой. Промежуточный слой выполнен из пластичного материала, имеющего предел текучести 0,05-0,5 от предела текучести тыльного слоя. Достигается повышение бронестойкости комбинированной брони за счет увеличения плотности акустического контакта между слоями.

Алюминиевая композитная броня

Этторе ди Руссо

Профессор Ди Руссо является научным руководителем фирмы "Алюми-ниа", входящей в состав итальянской группы MCS консорциума EFIM.

Фирма "Алюминиа", входящая в состав итальянской группы MCS разработала новый тип композитной броневой плиты, пригод-ной для использования на легких боевых бронированных машинах (AFV). Она состоит из трех основных слоев различных по соста-ву и механическим свойствам алюминиевых сплавов, соединенных вместе в одну плиту посредством горячей прокатки. Эта композит-ная броня обеспечивает лучшую баллистическую защиту, чем любая стандартная монолитная броня из алюминиевых сплавов, используе-мых в настоящее время: алюминиево-магниевого (серии 5ХХХ) либо алюминиево-цинково-магниевого (серии 7ХХХ).

Эта броня обеспечивает такое сочетание твердости, ударной вязкости и прочности, которое обеспечивает высокое сопротивление баллистическому внедрению снарядов кинетического действия, а также сопротивление образованию отколов брони с тыльной поверх-ности в районе удара. Она также может свариваться при использо-вании обычных методов дуговой сварки в среде инертного газа, что делает ее пригодной для изготовления элементов боевых бронирован-ных машин.

Центральный слой этой брони изготовлен из алюминиево-цинково-магниево-медного сплава (Al-Zn-Mg-Cu), который обладает высокой механической прочностью. Передний и задний слои изготов-лены из поддающегося сварке ударновязкого Al-Zn-Mg сплава. Между двумя внутренними контактными поверхностями добавляются тонкие слои из технически чистого алюминия (99,5% Al). Они обеспечивают лучшую ацгезию и повышают баллистические свойства композитной плиты.

Такое композитное строение сделало возможным впервые исполь-зовать очень прочный Al-Zn-Mg-Cu сплав в сварной броневой конструкции. Сплавы этого типа обычно используются в конструкции самолетов.

Первым легким материалом, широко используемым в качестве броневой защиты в конструкции БТР, например, М-113, является не поддающийся термообработке Al-Mg сплав 5083. Трехкомпонентные Al-Zn-Mg сплавы 7020, 7039 и 7017 представляют второе поко-ление легких броневых материалов. Характерными примерами примене-ния этих сплавов являйте: английские машины "Скорпион", "Фокс", MCV-80 и "Феррет-80" (сплав 7017), французская АМХ-10Р (сплав 7020), американская "Брэдли" (сплавы 7039+5083) и испанская BMR -3560 (сплав 7017).


Прочность Al-Zn-Mg сплавов, полученная после термооб-работки, значительно выше прочности Al-Mg сплавов (например, сплава 5083), которые термообработке не поддаются. Кроме того, способность Al-Zn-Mg сплавов в отличие от Al-Mg сплавов к дисперсионному твердению при комнатной температуре позволяет в значительной мере восстанавливать прочность, которую они могут потерять при нагреве во время сварки.

Однако более высокая сопротивляемость Al-Zn-Mg сплавов пробиванию сопровождается их повышенной склонностью к образованию отколов брони из-за пониженной ударной вязкости.

Композитная трехслойная плита, благодаря наличию в ее составе слоев с различными механическими свойствами, является примером оптимального сочетания твердости, прочности и ударной вязкости. Она имеет коммерческое обозначение Tristrato и запатенто-вана в Европе, США, Канаде, Японии, Израиле и Южной Африке .

Рис.1.

Справа: образец броневой плиты Tristrato;

слева: поперечное сечение, показывающее твер-дость по Бринелю (НВ) каждого слоя.


Баллистические характеристики

На нескольких военных полигонах в Италии и за ее пределами были проведены испытания плит Tristrato толщиной от 20 до 50 мм обстрелом различными типами боеприпасов (различные типы 7,62-, 12,7-, и 14,5-мм бронебойных пуль и 20-мм бронебойных снарядов).

В процессе испытаний определились следующие показатели:

при различных фиксированных ударных скоростях определялись значения углов встречи, соответствующих частостям пробития 0,50 и 0,95;

при различных фиксированных углах встречи определялись ударные скорости, соответствующие частости пробития 0,5.

Для сравнения параллельно проводились испытания монолитных контрольных плит из сплавов 5083, 7020, 7039 и 7017. Результаты испытаний показали, что броневая плита Tristrato обеспечива-ет повышенное сопротивление пробитию выбранными бронебойными средствами калибром до 20 мм. Это позволяет значительно уменьшить массу на единицу защищаемой площади по сравнению с традиционными монолитными плитами при обеспечении одинаковой стойкости. Для слу-чая обстрела 7,62-мм бронебойными пулями при угле встречи 0 о обеспечивается следующее уменьшение массы, необходимой для обеспече-ния равной стойкости:

на 32% по сравнению со сплавом 5083

на 21% по сравнению со сплавом 7020

на 14% по сравнению со сплавом 7039

на 10% по сравнению со сплавом 7017

При угле встречи 0 о ударная скорость, соответствующая час-тости пробития 0,5, повышается по сравнению с монолитными плитами из сплавов 7039 и 7017 на 4...14% в зависимости от типа базисного сплава, толщины брони и типа боеприпаса Композитная плита особен-но эффективна для защиты от 20-мм снарядов FSP , при обстре-ле которыми указанная характеристика возрастает на 21%.

Повышенная стойкость плиты Tristrato объясняется соче-танием высокой сопротивляемости внедрению пули (снаряда) из-за наличия твердого центрального элемента со способностью удерживать осколки, возникающие при пробитии центрального слоя, пластичным тыльным слоем, который сам осколков не дает.

Пластичный слой с тыльной стороны Tristrato играет важ-ную роль в предотвращении отколов брони. Этот эффект усиливается возможностью отслоения пластичного тыльного слоя и его пластичес-ким деформированием на значительной площади в районе попадания.

Это важный механизм сопротивления пробитию плиты Tristrato . Процесс отслоения поглощает энергию, а пустота, образуемая между сердцевиной и тыльным элементом, может улавливать снаряд и осколки, образуемые при разрушении высокотвердого материала сердцевины. Подобным же образом, расслоение на границе раздела между передним (лицевым) элементом и центральным слоем может способствовать раз-рушении снаряда или направлять снаряд и осколки вдоль границы раздела.


Рис.2.

Слева: схема, показывающая механизм сопротивления образованию отколов брови плиты Tristrate;

справа: результаты удара тупоносым бронебойным

снарядом по толстой плите Tristrato;


Производственные свойства

Плиты Tristrato можно сварить, пользуясь теми же мето-дами, которые применяются для соединения традиционных монолитных плит из Al - Zn - Mg сплавов (методами TIG и MIG ). Структура композитной плиты требует, чтобы были все же приняты некоторые специфические меры, определяемые особенностями хими-ческого состава центрального слоя, который следует рассматривать как "нехороший для сварки" материал, в отличие от переднего и тыльного элементов. Следовательно, при разработке сварного соединения следует учитывать тот факт, что основной вклад в механи-ческую прочность соединения должен вноситься наружным и тыльным элементами плиты.

Геометрия сварных соединений должна локализовать сварочные напряжения по границе и в зоне сплавления наплавленного и основного металлов. Это является важным для разрешения проблем корро-зионного растрескивания наружного и тыльного слоев плиты, которое иногда обнаруживается в Al - Zn - Mg сплавах. Центральный элемент благодаря высокому содержанию меди обнаруживает высокое сопротивление коррозионному растрескиванию.

Rrof. ETTORE DI RUSSO

ALUMINIUM COMPOSITE ARMOUR.

INTERNATIONAL DEFENSE REVIEW, 1988, No12, p.1657-1658

Очень часто можно слышать как броню сравнивают в соответствии с толщиной стальных пластин 1000, 800мм. Или, например, что определённый снаряд может пробить какое-то «n»-количество мм брони . Факт в том, что сейчас данные расчёты не объективны. Современная броня не может быть описана как эквивалент какой-либо толщины гомогенной стали.

В настоящее время существует два типа угроз: кинетическая энергия снаряда и химическая энергия. Под кинетической угрозой понимается бронебойный снаряд или, проще говоря, болванка обладающая большой кинетической энергией. В данном случае нельзя рассчитывать защитные свойства брони , исходя из толщины стальной пластины. Так, снаряды с обедненным ураном или карбидом вольфрама проходят сквозь сталь как нож в масло и толщина любой современной брони , если бы она была гомогенной сталью, не выдержала бы попадания подобных снарядов . Нет никакой брони толщиной в 300мм, которая эквивалентна 1200мм стали, и следовательно способной останавливать снаряд , который будет застревать и торчать в толще броневого листа. Успех защиты от бронебойных снарядов кроется в изменении вектора его воздействия на поверхность брони .

Если повезёт, то при попадании будет лишь небольшая вмятина, а если не повезёт, то снаряд прошьёт всю броню , независимо от того толстая она или тонкая. Проще говоря, броневые листы являются относительно тонкими и твёрдыми, и повреждающий эффект во многом зависит от характера взаимодействия со снарядом . В американской армии для увеличения твёрдости брони используется обедненный уран , в других странах карбид вольфрама , который фактически является более твёрдым. Около 80% способности танковой брони останавливать снаряды -болванки приходится на первые 10-20 мм современной брони .

Теперь рассмотрим химическое воздействие боеголовок .
Химическая энергия представлена двумя типами: HESH (Противотанковые бронебойно-фугасные) и HEAT (Кумулятивный снаряд ).

HEAT — сегодня больше распространена, и не имеет никакого отношения к высоким температурам. В HEAT используется принцип фокусировки энергии взрыва в очень узкой струе. Струя образуется, когда геометрически правильный конус снаружи обкладывают взрывчаткой . При детонации 1/3 энергии взрыва используется на формирование струи. Она за счёт высокого давления (не температуры) проникает сквозь броню . Простейшей защитой от данного типа энергии служит отставленные на полметра от корпуса слой брони , при этом получается рассеивание энергии струи. Этот приём использовался в период второй мировой войны, когда русские солдаты обкладывали корпус танка сеткой-рабицей от кроватей. Сейчас подобным образом поступают израильтяне на танке Меркава, они для защиты кормы от ПТУР и гранат РПГ используют стальные шары, висящие на цепях. Для этих же целей на башне установливается большая кормовая ниша, к которой они крепятся.

Другим методом защиты является использование динамической или реактивной брони . Возможно также применение комбинированной динамической и керамической брони (такая как Chobham ). При соприкосновении струи расплавленного металла с реактивной бронёй происходит детонация последней, образующаяся ударная волна дефокусирует струю, устраняя её поражающий эффект. Броня Chobham работает подобным образом, но в данном случае в момент взрыва отлетают куски керамики, превращающиеся в облако плотной пыли, которая полностью нейтрализует энергию кумулятивной струи.

HESH (Противотанковые бронебойно-фугасные) — боеголовка работает следующим образом: после взрыва она обтекает броню как глина и передаёт огромный импульс через металл. Далее, подобно биллиардным шарам, частицы брони сталкиваются друг с другом и, тем самым, защитные пластины разрушаются. Материал бронирования способен, разлетаясь на мелкую шрапнель, травмировать экипаж. Защита от такой брони подобна вышеописанной для HEAT.

Резюмируя вышесказанное, хочется отметить, что защита от кинетического воздействия снаряда сводится к нескольким сантиметрам металлизированной брони , когда как защита от HEAT и HESH заключается в создании отставленной брони , динамической защиты , а также некоторых материалов (керамика).

Общие типы брони, которые используются в танках:
1. Стальная броня. Она дешева и её легко сделать. Это может быть монолитный брусок или спаянная из нескольких пластин броня . Обработка повышенной температурой повышает упругость стали и улучшает отражательную способность против кинетического воздействия. Классические танки М48 и Т55 использовали этот тип брони .

2. Перфорированная стальная броня. Это сложная стальная броня , в которой просверлены перпендикулярные отверстия. Отверстия сверлятся из расчёта не больше чем 0,5 от диаметра ожидаемого снаряда . Очевидно, что уменьшается вес брони на 40-50%, но эффективность также падает на 30%. Это делает броню более пористой, что в какой-то мере защищает от HEAT и HESH. Передовые типы этой брони включают твердые цилиндрические наполнители в отверстиях, изготовленные, например, из керамики. Кроме того, перфорированную броню располагают на танке таким образом, чтобы снаряд попадал перпендикулярно ходу просверленных цилиндров. Вопреки расхожему мнению, изначально на танках Леопарда-2 использовалась не Chobham тип брони (тип динамической брони с керамикой), а перфорированную стальную.

3. Керамическая слоистая (тип Chobham) . Представляет из себя комбинированную броню из чередующихся металлических и керамических слоёв. Используемая разновидность керамики, как правило, является тайной, но обычно это глинозем (соли алюминия и сапфир), карбид бора (самая простая твердая керамика), и подобные материалы. Иногда используются синтетические волокна, скрепляющие металлические и керамические пластины. В последнее время в слоистой броне используются керамические матричные соединения. Керамическая слоистая броня очень хорошо защищает от кумулятивной струи (за счет расфокусировки плотной металлической струи), но также хорошо противостоит кинетическому воздействию. Слоистость также позволяет эффективно противостоять современным тандемным снарядам. Единственная проблема керамических пластин в том, что их нельзя согнуть, поэтому слоистая броня построена из квадратов.

В керамическом ламинате применяются сплавы, которые повышают его плотность. Это обычная по современным меркам технология. В основном в качестве материала используется вольфрамовый сплав или, в случае , сплав 0,75% титана с обедненным ураном. Проблема здесь состоит в том, что обедненный уран крайне ядовит при вдыхании.

4. Динамическая броня. Это дешёвый и относительно лёгкий способ защититься от кумулятивных снарядов. Представляет из себя бризантное взрывчатое вещество, сдавленное между двух стальных пластин. При поражении боеголовкой ВВ детонирует. Недостатком является бесполезность в случае кинетического удара снаряда , а также тандемного снаряда . Однако такая броня является лёгкой, модульной и простой. Её можно видеть, в частности, на Советских и Китайских танках. Динамическая броня используется, как правило, взамен передовой слоистой керамической брони .

5. Отставленная броня. Одно из ухищрений конструкторской мысли. В данном случае на определенном расстоянии от основной брони устанавливаются отставленные лёгкие заслоны. Эффективно только против кумулятивной струи.

6. Современная комбинированная броня . Большинство лучших танков оснащаются этим типом брони . По сути здесь используется комбинация из вышеперечисленных типов.
———————
Перевод с английского.
Адрес: www.network54.com/Forum/211833/thread/1123984275/last-1124092332/Modern+Tank+Armor