How to find the first arithmetic progression. Arithmetic progression

The sum of an arithmetic progression.

The sum of an arithmetic progression is a simple thing. Both in meaning and in formula. But there are all sorts of tasks on this topic. From elementary to quite solid.

First, let's deal with the meaning and formula of the sum. And then we'll decide. For your own pleasure.) The meaning of the sum is as simple as lowing. To find the sum of an arithmetic progression, you just need to carefully add all its members. If these terms are few, you can add without any formulas. But if there is a lot, or a lot ... addition is annoying.) In this case, the formula saves.

The sum formula is simple:

Let's figure out what kind of letters are included in the formula. This will clear up a lot.

S n is the sum of an arithmetic progression. Addition result all members, with first on last. It is important. Add up exactly all members in a row, without gaps and jumps. And, exactly, starting from first. In problems like finding the sum of the third and eighth terms, or the sum of terms five through twentieth, direct application of the formula will be disappointing.)

a 1 - first member of the progression. Everything is clear here, it's simple first row number.

a n- last member of the progression. The last number of the row. Not a very familiar name, but, when applied to the amount, it is very suitable. Then you will see for yourself.

n is the number of the last member. It is important to understand that in the formula this number coincides with the number of added terms.

Let's define the concept last member a n. Filling question: what kind of member will last, if given endless arithmetic progression?

For a confident answer, you need to understand the elementary meaning of an arithmetic progression and ... read the assignment carefully!)

In the task of finding the sum of an arithmetic progression, the last term always appears (directly or indirectly), which should be limited. Otherwise, a finite, specific amount just doesn't exist. For the solution, it does not matter what kind of progression is given: finite or infinite. It doesn't matter how it is given: by a series of numbers, or by the formula of the nth member.

The most important thing is to understand that the formula works from the first term of the progression to the term with the number n. Actually, the full name of the formula looks like this: the sum of the first n terms of an arithmetic progression. The number of these very first members, i.e. n, is determined solely by the task. In the task, all this valuable information is often encrypted, yes ... But nothing, in the examples below we will reveal these secrets.)

Examples of tasks for the sum of an arithmetic progression.

Primarily, helpful information:

The main difficulty in tasks for the sum of an arithmetic progression is the correct determination of the elements of the formula.

The authors of the assignments encrypt these very elements with boundless imagination.) The main thing here is not to be afraid. Understanding the essence of the elements, it is enough just to decipher them. Let's take a look at a few examples in detail. Let's start with a task based on a real GIA.

1. Arithmetic progression given by the condition: a n = 2n-3.5. Find the sum of the first 10 terms.

Good job. Easy.) To determine the amount according to the formula, what do we need to know? First Member a 1, last term a n, yes the number of the last term n.

Where to get the last member number n? Yes, in the same place, in the condition! It says find the sum first 10 members. Well, what number will it be last, tenth member?) You won’t believe it, his number is tenth!) Therefore, instead of a n we will substitute into the formula a 10, but instead n- ten. Again, the number of the last member is the same as the number of members.

It remains to be determined a 1 and a 10. This is easily calculated by the formula of the nth term, which is given in the problem statement. Don't know how to do it? Visit the previous lesson, without this - nothing.

a 1= 2 1 - 3.5 = -1.5

a 10\u003d 2 10 - 3.5 \u003d 16.5

S n = S 10.

We found out the meaning of all elements of the formula for the sum of an arithmetic progression. It remains to substitute them, and count:

That's all there is to it. Answer: 75.

Another task based on the GIA. A little more complicated:

2. Given an arithmetic progression (a n), the difference of which is 3.7; a 1 \u003d 2.3. Find the sum of the first 15 terms.

We immediately write the sum formula:

This formula allows us to find the value of any member by its number. We are looking for a simple substitution:

a 15 \u003d 2.3 + (15-1) 3.7 \u003d 54.1

It remains to substitute all the elements in the formula for the sum of an arithmetic progression and calculate the answer:

Answer: 423.

By the way, if in the sum formula instead of a n just substitute the formula of the nth term, we get:

We give similar ones, we get a new formula for the sum of members of an arithmetic progression:

As you can see, there is no need nth term a n. In some tasks, this formula helps out a lot, yes ... You can remember this formula. And you can simply withdraw it at the right time, as here. After all, the formula for the sum and the formula for the nth term must be remembered in every way.)

Now the task in the form of a short encryption):

3. Find the sum of all positive two-digit numbers that are multiples of three.

How! No first member, no last, no progression at all... How to live!?

You will have to think with your head and pull out from the condition all the elements of the sum of an arithmetic progression. What are two-digit numbers - we know. They consist of two numbers.) What two-digit number will first? 10, presumably.) last thing two digit number? 99, of course! The three-digit ones will follow him ...

Multiples of three... Hm... These are numbers that are evenly divisible by three, here! Ten is not divisible by three, 11 is not divisible... 12... is divisible! So, something is emerging. You can already write a series according to the condition of the problem:

12, 15, 18, 21, ... 96, 99.

Will this series be an arithmetic progression? Certainly! Each term differs from the previous one strictly by three. If 2, or 4, is added to the term, say, the result, i.e. a new number will no longer be divided by 3. You can immediately determine the difference of the arithmetic progression to the heap: d = 3. Useful!)

So, we can safely write down some progression parameters:

What will be the number n last member? Anyone who thinks that 99 is fatally mistaken ... Numbers - they always go in a row, and our members jump over the top three. They don't match.

There are two solutions here. One way is for the super hardworking. You can paint the progression, the whole series of numbers, and count the number of terms with your finger.) The second way is for the thoughtful. You need to remember the formula for the nth term. If the formula is applied to our problem, we get that 99 is the thirtieth member of the progression. Those. n = 30.

We look at the formula for the sum of an arithmetic progression:

We look and rejoice.) We pulled out everything necessary for calculating the amount from the condition of the problem:

a 1= 12.

a 30= 99.

S n = S 30.

What remains is elementary arithmetic. Substitute the numbers in the formula and calculate:

Answer: 1665

Another type of popular puzzles:

4. An arithmetic progression is given:

-21,5; -20; -18,5; -17; ...

Find the sum of terms from the twentieth to thirty-fourth.

We look at the sum formula and ... we are upset.) The formula, let me remind you, calculates the sum from the first member. And in the problem you need to calculate the sum since the twentieth... The formula won't work.

You can, of course, paint the entire progression in a row, and put the members from 20 to 34. But ... somehow it turns out stupidly and for a long time, right?)

There is a more elegant solution. Let's break our series into two parts. The first part will from the first term to the nineteenth. Second part - twenty to thirty-four. It is clear that if we calculate the sum of the terms of the first part S 1-19, let's add it to the sum of the members of the second part S 20-34, we get the sum of the progression from the first term to the thirty-fourth S 1-34. Like this:

S 1-19 + S 20-34 = S 1-34

This shows that to find the sum S 20-34 can be done by simple subtraction

S 20-34 = S 1-34 - S 1-19

Both sums on the right side are considered from the first member, i.e. the standard sum formula is quite applicable to them. Are we getting started?

We extract the progression parameters from the task condition:

d = 1.5.

a 1= -21,5.

To calculate the sums of the first 19 and the first 34 terms, we will need the 19th and 34th terms. We count them according to the formula of the nth term, as in problem 2:

a 19\u003d -21.5 + (19-1) 1.5 \u003d 5.5

a 34\u003d -21.5 + (34-1) 1.5 \u003d 28

There is nothing left. Subtract the sum of 19 terms from the sum of 34 terms:

S 20-34 = S 1-34 - S 1-19 = 110.5 - (-152) = 262.5

Answer: 262.5

One important note! There is a very useful feature in solving this problem. Instead of direct calculation what you need (S 20-34), we counted what, it would seem, is not needed - S 1-19. And then they determined S 20-34, discarding the unnecessary from the full result. Such a "feint with the ears" often saves in evil puzzles.)

In this lesson, we examined problems for which it is enough to understand the meaning of the sum of an arithmetic progression. Well, you need to know a couple of formulas.)

Practical advice:

When solving any problem for the sum of an arithmetic progression, I recommend immediately writing out the two main formulas from this topic.

Formula of the nth term:

These formulas will immediately tell you what to look for, in which direction to think in order to solve the problem. Helps.

And now the tasks for independent solution.

5. Find the sum of all two-digit numbers that are not divisible by three.

Cool?) The hint is hidden in the note to problem 4. Well, problem 3 will help.

6. Arithmetic progression is given by the condition: a 1 =-5.5; a n+1 = a n +0.5. Find the sum of the first 24 terms.

Unusual?) This is a recurrent formula. You can read about it in the previous lesson. Do not ignore the link, such puzzles are often found in the GIA.

7. Vasya saved up money for the Holiday. As much as 4550 rubles! And I decided to give the most beloved person (myself) a few days of happiness). Live beautifully without denying yourself anything. Spend 500 rubles on the first day, and spend 50 rubles more on each subsequent day than on the previous one! Until the money runs out. How many days of happiness did Vasya have?

Is it difficult?) An additional formula from task 2 will help.

Answers (in disarray): 7, 3240, 6.

If you like this site...

By the way, I have a couple more interesting sites for you.)

You can practice solving examples and find out your level. Testing with instant verification. Learning - with interest!)

you can get acquainted with functions and derivatives.

When studying algebra in a secondary school (grade 9), one of the important topics is the study of numerical sequences, which include progressions - geometric and arithmetic. In this article, we will consider an arithmetic progression and examples with solutions.

What is an arithmetic progression?

To understand this, it is necessary to give a definition of the progression under consideration, as well as to give the basic formulas that will be further used in solving problems.

It is known that in some algebraic progression the 1st term is equal to 6, and the 7th term is equal to 18. It is necessary to find the difference and restore this sequence to the 7th term.

Let's use the formula to determine the unknown term: a n = (n - 1) * d + a 1 . We substitute the known data from the condition into it, that is, the numbers a 1 and a 7, we have: 18 \u003d 6 + 6 * d. From this expression, you can easily calculate the difference: d = (18 - 6) / 6 = 2. Thus, the first part of the problem was answered.

To restore the sequence to the 7th member, you should use the definition of an algebraic progression, that is, a 2 = a 1 + d, a 3 = a 2 + d, and so on. As a result, we restore the entire sequence: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14, a 6 = 14 + 2 = 16 and 7 = 18.

Example #3: making a progression

Let us complicate the condition of the problem even more. Now you need to answer the question of how to find an arithmetic progression. We can give the following example: two numbers are given, for example, 4 and 5. It is necessary to make an algebraic progression so that three more terms fit between these.

Before starting to solve this problem, it is necessary to understand what place the given numbers will occupy in the future progression. Since there will be three more terms between them, then a 1 \u003d -4 and a 5 \u003d 5. Having established this, we proceed to a task that is similar to the previous one. Again, for the nth term, we use the formula, we get: a 5 \u003d a 1 + 4 * d. From: d \u003d (a 5 - a 1) / 4 \u003d (5 - (-4)) / 4 \u003d 2.25. Here, the difference is not an integer value, but it is a rational number, so the formulas for the algebraic progression remain the same.

Now let's add the found difference to a 1 and restore the missing members of the progression. We get: a 1 = - 4, a 2 = - 4 + 2.25 = - 1.75, a 3 = -1.75 + 2.25 = 0.5, a 4 = 0.5 + 2.25 = 2.75, a 5 \u003d 2.75 + 2.25 \u003d 5, which coincided with the condition of the problem.

Example #4: The first member of the progression

We continue to give examples of an arithmetic progression with a solution. In all previous problems, the first number of the algebraic progression was known. Now consider a problem of a different type: let two numbers be given, where a 15 = 50 and a 43 = 37. It is necessary to find from what number this sequence begins.

The formulas that have been used so far assume knowledge of a 1 and d. Nothing is known about these numbers in the condition of the problem. Nevertheless, let's write out the expressions for each term about which we have information: a 15 = a 1 + 14 * d and a 43 = a 1 + 42 * d. We got two equations in which there are 2 unknown quantities (a 1 and d). This means that the problem is reduced to solving a system of linear equations.

The specified system is easiest to solve if you express a 1 in each equation, and then compare the resulting expressions. First equation: a 1 = a 15 - 14 * d = 50 - 14 * d; second equation: a 1 \u003d a 43 - 42 * d \u003d 37 - 42 * d. Equating these expressions, we get: 50 - 14 * d \u003d 37 - 42 * d, whence the difference d \u003d (37 - 50) / (42 - 14) \u003d - 0.464 (only 3 decimal places are given).

Knowing d, you can use any of the 2 expressions above for a 1 . For example, first: a 1 \u003d 50 - 14 * d \u003d 50 - 14 * (- 0.464) \u003d 56.496.

If there are doubts about the result, you can check it, for example, determine the 43rd member of the progression, which is specified in the condition. We get: a 43 \u003d a 1 + 42 * d \u003d 56.496 + 42 * (- 0.464) \u003d 37.008. A small error is due to the fact that rounding to thousandths was used in the calculations.

Example #5: Sum

Now let's look at some examples with solutions for the sum of an arithmetic progression.

Let a numerical progression of the following form be given: 1, 2, 3, 4, ...,. How to calculate the sum of 100 of these numbers?

Thanks to the development of computer technology, this problem can be solved, that is, sequentially add up all the numbers, which the computer will do as soon as a person presses the Enter key. However, the problem can be solved mentally if you pay attention that the presented series of numbers is an algebraic progression, and its difference is 1. Applying the formula for the sum, we get: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

It is curious to note that this problem is called "Gaussian" because in early XVIII of the century, the famous German, still at the age of only 10 years old, was able to solve it in his mind in a few seconds. The boy did not know the formula for the sum of an algebraic progression, but he noticed that if you add pairs of numbers located at the edges of the sequence, you always get the same result, that is, 1 + 100 = 2 + 99 = 3 + 98 = ..., and since these sums will be exactly 50 (100 / 2), then to get the correct answer, it is enough to multiply 50 by 101.

Example #6: sum of terms from n to m

Another typical example of the sum of an arithmetic progression is the following: given a series of numbers: 3, 7, 11, 15, ..., you need to find what the sum of its terms from 8 to 14 will be.

The problem is solved in two ways. The first of them involves finding unknown terms from 8 to 14, and then summing them up sequentially. Since there are few terms, this method is not laborious enough. Nevertheless, it is proposed to solve this problem by the second method, which is more universal.

The idea is to get a formula for the sum of an algebraic progression between terms m and n, where n > m are integers. For both cases, we write two expressions for the sum:

  1. S m \u003d m * (a m + a 1) / 2.
  2. S n \u003d n * (a n + a 1) / 2.

Since n > m, it is obvious that the 2 sum includes the first one. The last conclusion means that if we take the difference between these sums, and add the term a m to it (in the case of taking the difference, it is subtracted from the sum S n), then we get the necessary answer to the problem. We have: S mn \u003d S n - S m + a m \u003d n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m \u003d a 1 * (n - m) / 2 + a n * n / 2 + a m * (1- m / 2). It is necessary to substitute formulas for a n and a m into this expression. Then we get: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d * (3 * m - m 2 - 2) / 2.

The resulting formula is somewhat cumbersome, however, the sum S mn depends only on n, m, a 1 and d. In our case, a 1 = 3, d = 4, n = 14, m = 8. Substituting these numbers, we get: S mn = 301.

As can be seen from the above solutions, all problems are based on the knowledge of the expression for the nth term and the formula for the sum of the set of first terms. Before you start solving any of these problems, it is recommended that you carefully read the condition, clearly understand what you want to find, and only then proceed with the solution.

Another tip is to strive for simplicity, that is, if you can answer the question without using complex mathematical calculations, then you need to do just that, since in this case the probability of making a mistake is less. For example, in the example of an arithmetic progression with solution No. 6, one could stop at the formula S mn \u003d n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m, and break the general task into separate subtasks (in this case, first find the terms a n and a m).

If there are doubts about the result obtained, it is recommended to check it, as was done in some of the examples given. How to find an arithmetic progression, found out. Once you figure it out, it's not that hard.

If every natural number n match a real number a n , then they say that given number sequence :

a 1 , a 2 , a 3 , . . . , a n , . . . .

So, a numerical sequence is a function of a natural argument.

Number a 1 called the first member of the sequence , number a 2 the second member of the sequence , number a 3 third etc. Number a n called nth member of the sequence , and the natural number nhis number .

From two neighboring members a n and a n +1 member sequences a n +1 called subsequent (towards a n ), a a n previous (towards a n +1 ).

To specify a sequence, you must specify a method that allows you to find a sequence member with any number.

Often the sequence is given with nth term formulas , that is, a formula that allows you to determine a sequence member by its number.

For example,

the sequence of positive odd numbers can be given by the formula

a n= 2n- 1,

and the sequence of alternating 1 and -1 - formula

b n = (-1)n +1 .

The sequence can be determined recurrent formula, that is, a formula that expresses any member of the sequence, starting with some, through the previous (one or more) members.

For example,

if a 1 = 1 , a a n +1 = a n + 5

a 1 = 1,

a 2 = a 1 + 5 = 1 + 5 = 6,

a 3 = a 2 + 5 = 6 + 5 = 11,

a 4 = a 3 + 5 = 11 + 5 = 16,

a 5 = a 4 + 5 = 16 + 5 = 21.

If a a 1= 1, a 2 = 1, a n +2 = a n + a n +1 , then the first seven members of the numerical sequence are set as follows:

a 1 = 1,

a 2 = 1,

a 3 = a 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

a 5 = a 3 + a 4 = 2 + 3 = 5,

a 6 = a 4 + a 5 = 3 + 5 = 8,

a 7 = a 5 + a 6 = 5 + 8 = 13.

Sequences can be final and endless .

The sequence is called ultimate if it has a finite number of members. The sequence is called endless if it has infinitely many members.

For example,

sequence of two-digit natural numbers:

10, 11, 12, 13, . . . , 98, 99

final.

Prime number sequence:

2, 3, 5, 7, 11, 13, . . .

endless.

The sequence is called increasing , if each of its members, starting from the second, is greater than the previous one.

The sequence is called waning , if each of its members, starting from the second, is less than the previous one.

For example,

2, 4, 6, 8, . . . , 2n, . . . is an ascending sequence;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 /n, . . . is a descending sequence.

A sequence whose elements do not decrease with increasing number, or, conversely, do not increase, is called monotonous sequence .

Monotonic sequences, in particular, are increasing sequences and decreasing sequences.

Arithmetic progression

Arithmetic progression a sequence is called, each member of which, starting from the second, is equal to the previous one, to which the same number is added.

a 1 , a 2 , a 3 , . . . , a n, . . .

is an arithmetic progression if for any natural number n condition is met:

a n +1 = a n + d,

where d - some number.

Thus, the difference between the next and the previous members of a given arithmetic progression is always constant:

a 2 - a 1 = a 3 - a 2 = . . . = a n +1 - a n = d.

Number d called the difference of an arithmetic progression.

To set an arithmetic progression, it is enough to specify its first term and difference.

For example,

if a 1 = 3, d = 4 , then the first five terms of the sequence are found as follows:

a 1 =3,

a 2 = a 1 + d = 3 + 4 = 7,

a 3 = a 2 + d= 7 + 4 = 11,

a 4 = a 3 + d= 11 + 4 = 15,

a 5 = a 4 + d= 15 + 4 = 19.

For an arithmetic progression with the first term a 1 and difference d her n

a n = a 1 + (n- 1)d.

For example,

find the thirtieth term of an arithmetic progression

1, 4, 7, 10, . . .

a 1 =1, d = 3,

a 30 = a 1 + (30 - 1)d= 1 + 29· 3 = 88.

a n-1 = a 1 + (n- 2)d,

a n= a 1 + (n- 1)d,

a n +1 = a 1 + nd,

then obviously

a n=
a n-1 + a n+1
2

each member of the arithmetic progression, starting from the second, is equal to the arithmetic mean of the previous and subsequent members.

numbers a, b and c are consecutive members of some arithmetic progression if and only if one of them is equal to the arithmetic mean of the other two.

For example,

a n = 2n- 7 , is an arithmetic progression.

Let's use the statement above. We have:

a n = 2n- 7,

a n-1 = 2(n- 1) - 7 = 2n- 9,

a n+1 = 2(n+ 1) - 7 = 2n- 5.

Hence,

a n+1 + a n-1
=
2n- 5 + 2n- 9
= 2n- 7 = a n,
2
2

Note that n -th member of an arithmetic progression can be found not only through a 1 , but also any previous a k

a n = a k + (n- k)d.

For example,

for a 5 can be written

a 5 = a 1 + 4d,

a 5 = a 2 + 3d,

a 5 = a 3 + 2d,

a 5 = a 4 + d.

a n = a n-k + kd,

a n = a n+k - kd,

then obviously

a n=
a n-k + a n+k
2

any member of an arithmetic progression, starting from the second, is equal to half the sum of the members of this arithmetic progression equally spaced from it.

In addition, for any arithmetic progression, the equality is true:

a m + a n = a k + a l,

m + n = k + l.

For example,

in arithmetic progression

1) a 10 = 28 = (25 + 31)/2 = (a 9 + a 11 )/2;

2) 28 = a 10 = a 3 + 7d= 7 + 7 3 = 7 + 21 = 28;

3) a 10= 28 = (19 + 37)/2 = (a 7 + a 13)/2;

4) a 2 + a 12 = a 5 + a 9, as

a 2 + a 12= 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n= a 1 + a 2 + a 3 + . . .+ a n,

first n members of an arithmetic progression is equal to the product of half the sum of the extreme terms by the number of terms:

From this, in particular, it follows that if it is necessary to sum the terms

a k, a k +1 , . . . , a n,

then the previous formula retains its structure:

For example,

in arithmetic progression 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

If an arithmetic progression is given, then the quantities a 1 , a n, d, n andS n linked by two formulas:

Therefore, if the values ​​of three of these quantities are given, then the corresponding values ​​of the other two quantities are determined from these formulas combined into a system of two equations with two unknowns.

An arithmetic progression is a monotonic sequence. Wherein:

  • if d > 0 , then it is increasing;
  • if d < 0 , then it is decreasing;
  • if d = 0 , then the sequence will be stationary.

Geometric progression

geometric progression a sequence is called, each term of which, starting from the second, is equal to the previous one, multiplied by the same number.

b 1 , b 2 , b 3 , . . . , b n, . . .

is a geometric progression if for any natural number n condition is met:

b n +1 = b n · q,

where q ≠ 0 - some number.

Thus, the ratio of the next term of this geometric progression to the previous one is a constant number:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q.

Number q called denominator of a geometric progression.

To set a geometric progression, it is enough to specify its first term and denominator.

For example,

if b 1 = 1, q = -3 , then the first five terms of the sequence are found as follows:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q= -3 · (-3) = 9,

b 4 = b 3 · q= 9 · (-3) = -27,

b 5 = b 4 · q= -27 · (-3) = 81.

b 1 and denominator q her n -th term can be found by the formula:

b n = b 1 · q n -1 .

For example,

find the seventh term of a geometric progression 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 2 6 = 64.

bn-1 = b 1 · q n -2 ,

b n = b 1 · q n -1 ,

b n +1 = b 1 · q n,

then obviously

b n 2 = b n -1 · b n +1 ,

each member of the geometric progression, starting from the second, is equal to the geometric mean (proportional) of the previous and subsequent members.

Since the converse is also true, the following assertion holds:

numbers a, b and c are consecutive members of some geometric progression if and only if the square of one of them is equal to the product of the other two, that is, one of the numbers is the geometric mean of the other two.

For example,

let us prove that the sequence given by the formula b n= -3 2 n , is a geometric progression. Let's use the statement above. We have:

b n= -3 2 n,

b n -1 = -3 2 n -1 ,

b n +1 = -3 2 n +1 .

Hence,

b n 2 = (-3 2 n) 2 = (-3 2 n -1 ) (-3 2 n +1 ) = b n -1 · b n +1 ,

which proves the required assertion.

Note that n th term of a geometric progression can be found not only through b 1 , but also any previous term b k , for which it suffices to use the formula

b n = b k · q n - k.

For example,

for b 5 can be written

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3,

b 5 = b 3 · q2,

b 5 = b 4 · q.

b n = b k · q n - k,

b n = b n - k · q k,

then obviously

b n 2 = b n - k· b n + k

the square of any member of a geometric progression, starting from the second, is equal to the product of the members of this progression equidistant from it.

In addition, for any geometric progression, the equality is true:

b m· b n= b k· b l,

m+ n= k+ l.

For example,

exponentially

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , as

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n= b 1 + b 2 + b 3 + . . . + b n

first n members of a geometric progression with a denominator q 0 calculated by the formula:

And when q = 1 - according to the formula

S n= n.b. 1

Note that if we need to sum the terms

b k, b k +1 , . . . , b n,

then the formula is used:

S n- S k -1 = b k + b k +1 + . . . + b n = b k · 1 - q n - k +1
.
1 - q

For example,

exponentially 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

If a geometric progression is given, then the quantities b 1 , b n, q, n and S n linked by two formulas:

Therefore, if the values ​​of any three of these quantities are given, then the corresponding values ​​of the other two quantities are determined from these formulas combined into a system of two equations with two unknowns.

For a geometric progression with the first term b 1 and denominator q the following take place monotonicity properties :

  • the progression is increasing if one of the following conditions is met:

b 1 > 0 and q> 1;

b 1 < 0 and 0 < q< 1;

  • A progression is decreasing if one of the following conditions is met:

b 1 > 0 and 0 < q< 1;

b 1 < 0 and q> 1.

If a q< 0 , then the geometric progression is sign-alternating: its odd-numbered terms have the same sign as its first term, and even-numbered terms have the opposite sign. It is clear that an alternating geometric progression is not monotonic.

Product of the first n terms of a geometric progression can be calculated by the formula:

P n= b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n) n / 2 .

For example,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Infinitely decreasing geometric progression

Infinitely decreasing geometric progression is called an infinite geometric progression whose denominator modulus is less than 1 , i.e

|q| < 1 .

Note that an infinitely decreasing geometric progression may not be a decreasing sequence. This fits the case

1 < q< 0 .

With such a denominator, the sequence is sign-alternating. For example,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

The sum of an infinitely decreasing geometric progression name the number to which the sum of the first n terms of the progression with an unlimited increase in the number n . This number is always finite and is expressed by the formula

S= b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

For example,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Relationship between arithmetic and geometric progressions

Arithmetic and geometric progressions are closely related. Let's consider just two examples.

a 1 , a 2 , a 3 , . . . d , then

b a 1 , b a 2 , b a 3 , . . . b d .

For example,

1, 3, 5, . . . — arithmetic progression with difference 2 and

7 1 , 7 3 , 7 5 , . . . is a geometric progression with a denominator 7 2 .

b 1 , b 2 , b 3 , . . . is a geometric progression with a denominator q , then

log a b 1, log a b 2, log a b 3, . . . — arithmetic progression with difference log aq .

For example,

2, 12, 72, . . . is a geometric progression with a denominator 6 and

lg 2, lg 12, lg 72, . . . — arithmetic progression with difference lg 6 .

First level

Arithmetic progression. Detailed theory with examples (2019)

Numeric sequence

So let's sit down and start writing some numbers. For example:
You can write any numbers, and there can be as many as you like (in our case, them). No matter how many numbers we write, we can always say which of them is the first, which is the second, and so on to the last, that is, we can number them. This is an example of a number sequence:

Numeric sequence
For example, for our sequence:

The assigned number is specific to only one sequence number. In other words, there are no three second numbers in the sequence. The second number (like the -th number) is always the same.
The number with the number is called the -th member of the sequence.

We usually call the whole sequence some letter (for example,), and each member of this sequence - the same letter with an index equal to the number of this member: .

In our case:

Let's say we have a numerical sequence in which the difference between adjacent numbers is the same and equal.
For example:

etc.
Such a numerical sequence is called an arithmetic progression.
The term "progression" was introduced by the Roman author Boethius as early as the 6th century and was understood in a broader sense as an endless numerical sequence. The name "arithmetic" was transferred from the theory of continuous proportions, which the ancient Greeks were engaged in.

This is a numerical sequence, each member of which is equal to the previous one, added with the same number. This number is called the difference of an arithmetic progression and is denoted.

Try to determine which number sequences are an arithmetic progression and which are not:

a)
b)
c)
d)

Got it? Compare our answers:
Is an arithmetic progression - b, c.
Is not arithmetic progression - a, d.

Let's return to the given progression () and try to find the value of its th member. Exist two way to find it.

1. Method

We can add to the previous value of the progression number until we reach the th term of the progression. It’s good that we don’t have much to summarize - only three values:

So, the -th member of the described arithmetic progression is equal to.

2. Method

What if we needed to find the value of the th term of the progression? The summation would have taken us more than one hour, and it is not a fact that we would not have made mistakes when adding the numbers.
Of course, mathematicians have come up with a way in which you do not need to add the difference of an arithmetic progression to the previous value. Look closely at the drawn picture ... Surely you have already noticed a certain pattern, namely:

For example, let's see what makes up the value of the -th member of this arithmetic progression:


In other words:

Try to independently find in this way the value of a member of this arithmetic progression.

Calculated? Compare your entries with the answer:

Pay attention that you got exactly the same number as in the previous method, when we successively added the members of an arithmetic progression to the previous value.
Let's try to "depersonalize" this formula - let's bring it into general form and get:

Arithmetic progression equation.

Arithmetic progressions are either increasing or decreasing.

Increasing- progressions in which each subsequent value of the terms is greater than the previous one.
For example:

Descending- progressions in which each subsequent value of the terms is less than the previous one.
For example:

The derived formula is used in the calculation of terms in both increasing and decreasing terms of an arithmetic progression.
Let's check it out in practice.
We are given an arithmetic progression consisting of the following numbers:


Since then:

Thus, we were convinced that the formula works both in decreasing and in increasing arithmetic progression.
Try to find the -th and -th members of this arithmetic progression on your own.

Let's compare the results:

Arithmetic progression property

Let's complicate the task - we derive the property of an arithmetic progression.
Suppose we are given the following condition:
- arithmetic progression, find the value.
It's easy, you say, and start counting according to the formula you already know:

Let, a, then:

Absolutely right. It turns out that we first find, then add it to the first number and get what we are looking for. If the progression is represented by small values, then there is nothing complicated about it, but what if we are given numbers in the condition? Agree, there is a possibility of making mistakes in the calculations.
Now think, is it possible to solve this problem in one step using any formula? Of course, yes, and we will try to bring it out now.

Let's denote the desired term of the arithmetic progression as, we know the formula for finding it - this is the same formula that we derived at the beginning:
, then:

  • the previous member of the progression is:
  • the next term of the progression is:

Let's sum the previous and next members of the progression:

It turns out that the sum of the previous and subsequent members of the progression is twice the value of the member of the progression located between them. In other words, in order to find the value of a progression member with known previous and successive values, it is necessary to add them and divide by.

That's right, we got the same number. Let's fix the material. Calculate the value for the progression yourself, because it is not difficult at all.

Well done! You know almost everything about progression! It remains to find out only one formula, which, according to legend, one of the greatest mathematicians of all time, the "king of mathematicians" - Karl Gauss, easily deduced for himself ...

When Carl Gauss was 9 years old, the teacher, busy checking the work of students from other classes, asked the following task at the lesson: "Calculate the sum of all natural numbers from up to (according to other sources up to) inclusive." What was the surprise of the teacher when one of his students (it was Karl Gauss) after a minute gave the correct answer to the task, while most of the classmates of the daredevil after long calculations received the wrong result ...

Young Carl Gauss noticed a pattern that you can easily notice.
Let's say we have an arithmetic progression consisting of -ti members: We need to find the sum of the given members of the arithmetic progression. Of course, we can manually sum all the values, but what if we need to find the sum of its terms in the task, as Gauss was looking for?

Let's depict the progression given to us. Look closely at the highlighted numbers and try to perform various mathematical operations with them.


Tried? What did you notice? Correctly! Their sums are equal


Now answer, how many such pairs will there be in the progression given to us? Of course, exactly half of all numbers, that is.
Based on the fact that the sum of two members of an arithmetic progression is equal, and similar equal pairs, we get that the total sum is equal to:
.
Thus, the formula for the sum of the first terms of any arithmetic progression will be:

In some problems, we do not know the th term, but we know the progression difference. Try to substitute in the sum formula, the formula of the th member.
What did you get?

Well done! Now let's return to the problem that was given to Carl Gauss: calculate for yourself what the sum of numbers starting from the -th is, and the sum of the numbers starting from the -th.

How much did you get?
Gauss turned out that the sum of the terms is equal, and the sum of the terms. Is that how you decided?

In fact, the formula for the sum of members of an arithmetic progression was proved by the ancient Greek scientist Diophantus back in the 3rd century, and throughout this time, witty people used the properties of an arithmetic progression with might and main.
For example, imagine Ancient Egypt and the largest construction site of that time - the construction of a pyramid ... The figure shows one side of it.

Where is the progression here you say? Look carefully and find a pattern in the number of sand blocks in each row of the pyramid wall.


Why not an arithmetic progression? Count how many blocks are needed to build one wall if block bricks are placed in the base. I hope you won’t count by moving your finger across the monitor, do you remember the last formula and everything we said about arithmetic progression?

In this case, the progression looks like this:
Arithmetic progression difference.
The number of members of an arithmetic progression.
Let's substitute our data into the last formulas (we count the number of blocks in 2 ways).

Method 1.

Method 2.

And now you can also calculate on the monitor: compare the values ​​obtained with the number of blocks that are in our pyramid. Did it agree? Well done, you have mastered the sum of the th terms of an arithmetic progression.
Of course, you can’t build a pyramid from the blocks at the base, but from? Try to calculate how many sand bricks are needed to build a wall with this condition.
Did you manage?
The correct answer is blocks:

Workout

Tasks:

  1. Masha is getting in shape for the summer. Every day she increases the number of squats by. How many times will Masha squat in weeks if she did squats at the first workout.
  2. What is the sum of all odd numbers contained in.
  3. When storing logs, lumberjacks stack them in such a way that each top layer contains one less log than the previous one. How many logs are in one masonry, if the base of the masonry is logs.

Answers:

  1. Let us define the parameters of the arithmetic progression. In this case
    (weeks = days).

    Answer: In two weeks, Masha should squat once a day.

  2. First odd number, last number.
    Arithmetic progression difference.
    The number of odd numbers in - half, however, check this fact using the formula for finding the -th member of an arithmetic progression:

    The numbers do contain odd numbers.
    We substitute the available data into the formula:

    Answer: The sum of all odd numbers contained in is equal to.

  3. Recall the problem about the pyramids. For our case, a , since each top layer is reduced by one log, there are only a bunch of layers, that is.
    Substitute the data in the formula:

    Answer: There are logs in the masonry.

Summing up

  1. - a numerical sequence in which the difference between adjacent numbers is the same and equal. It is increasing and decreasing.
  2. Finding formula th member of an arithmetic progression is written by the formula - , where is the number of numbers in the progression.
  3. Property of members of an arithmetic progression- - where - the number of numbers in the progression.
  4. The sum of the members of an arithmetic progression can be found in two ways:

    , where is the number of values.

ARITHMETIC PROGRESSION. MIDDLE LEVEL

Numeric sequence

Let's sit down and start writing some numbers. For example:

You can write any numbers, and there can be as many as you like. But you can always tell which of them is the first, which is the second, and so on, that is, we can number them. This is an example of a number sequence.

Numeric sequence is a set of numbers, each of which can be assigned a unique number.

In other words, each number can be associated with a certain natural number, and only one. And we will not assign this number to any other number from this set.

The number with the number is called the -th member of the sequence.

We usually call the whole sequence some letter (for example,), and each member of this sequence - the same letter with an index equal to the number of this member: .

It is very convenient if the -th member of the sequence can be given by some formula. For example, the formula

sets the sequence:

And the formula is the following sequence:

For example, an arithmetic progression is a sequence (the first term here is equal, and the difference). Or (, difference).

nth term formula

We call a recurrent formula such a formula in which, in order to find out the th term, you need to know the previous or several previous ones:

To find, for example, the th term of the progression using such a formula, we have to calculate the previous nine. For example, let. Then:

Well, now it's clear what the formula is?

In each line, we add to, multiplied by some number. For what? Very simple: this is the number of the current member minus:

Much more comfortable now, right? We check:

Decide for yourself:

In an arithmetic progression, find the formula for the nth term and find the hundredth term.

Decision:

The first member is equal. And what is the difference? And here's what:

(after all, it is called the difference because it is equal to the difference of successive members of the progression).

So the formula is:

Then the hundredth term is:

What is the sum of all natural numbers from to?

According to legend, the great mathematician Carl Gauss, being a 9-year-old boy, calculated this amount in a few minutes. He noticed that the sum of the first and last number is equal, the sum of the second and penultimate is the same, the sum of the third and the 3rd from the end is the same, and so on. How many such pairs are there? That's right, exactly half the number of all numbers, that is. So,

The general formula for the sum of the first terms of any arithmetic progression will be:

Example:
Find the sum of all two-digit multiples.

Decision:

The first such number is this. Each next is obtained by adding a number to the previous one. Thus, the numbers of interest to us form an arithmetic progression with the first term and the difference.

The formula for the th term for this progression is:

How many terms are in the progression if they must all be two digits?

Very easy: .

The last term of the progression will be equal. Then the sum:

Answer: .

Now decide for yourself:

  1. Every day the athlete runs 1m more than the previous day. How many kilometers will he run in weeks if he ran km m on the first day?
  2. A cyclist rides more miles each day than the previous one. On the first day he traveled km. How many days does he have to drive to cover a kilometer? How many kilometers will he travel on the last day of the journey?
  3. The price of a refrigerator in the store is reduced by the same amount every year. Determine how much the price of a refrigerator decreased every year if, put up for sale for rubles, six years later it was sold for rubles.

Answers:

  1. The most important thing here is to recognize the arithmetic progression and determine its parameters. In this case, (weeks = days). You need to determine the sum of the first terms of this progression:
    .
    Answer:
  2. Here it is given:, it is necessary to find.
    Obviously, you need to use the same sum formula as in the previous problem:
    .
    Substitute the values:

    The root obviously doesn't fit, so the answer.
    Let's calculate the distance traveled over the last day using the formula of the -th term:
    (km).
    Answer:

  3. Given: . To find: .
    It doesn't get easier:
    (rub).
    Answer:

ARITHMETIC PROGRESSION. BRIEFLY ABOUT THE MAIN

This is a numerical sequence in which the difference between adjacent numbers is the same and equal.

Arithmetic progression is increasing () and decreasing ().

For example:

The formula for finding the n-th member of an arithmetic progression

is written as a formula, where is the number of numbers in the progression.

Property of members of an arithmetic progression

It makes it easy to find a member of the progression if its neighboring members are known - where is the number of numbers in the progression.

The sum of the members of an arithmetic progression

There are two ways to find the sum:

Where is the number of values.

Where is the number of values.

Well, the topic is over. If you are reading these lines, then you are very cool.

Because only 5% of people are able to master something on their own. And if you have read to the end, then you are in the 5%!

Now the most important thing.

You've figured out the theory on this topic. And, I repeat, it's ... it's just super! You are already better than the vast majority of your peers.

The problem is that this may not be enough ...

For what?

For the successful passing of the exam, for admission to the institute on the budget and, MOST IMPORTANTLY, for life.

I will not convince you of anything, I will just say one thing ...

People who have received a good education earn much more than those who have not received it. This is statistics.

But this is not the main thing.

The main thing is that they are MORE HAPPY (there are such studies). Perhaps because much more opportunities open up before them and life becomes brighter? Don't know...

But think for yourself...

What does it take to be sure to be better than others on the exam and be ultimately ... happier?

FILL YOUR HAND, SOLVING PROBLEMS ON THIS TOPIC.

On the exam, you will not be asked theory.

You will need solve problems on time.

And, if you haven’t solved them (LOTS!), you will definitely make a stupid mistake somewhere or simply won’t make it in time.

It's like in sports - you need to repeat many times to win for sure.

Find a collection anywhere you want necessarily with solutions, detailed analysis and decide, decide, decide!

You can use our tasks (not necessary) and we certainly recommend them.

In order to get a hand with the help of our tasks, you need to help extend the life of the YouClever textbook that you are currently reading.

How? There are two options:

  1. Unlock access to all hidden tasks in this article - 299 rub.
  2. Unlock access to all hidden tasks in all 99 articles of the tutorial - 999 rub.

Yes, we have 99 such articles in the textbook and access to all tasks and all hidden texts in them can be opened immediately.

In the second case we will give you simulator "6000 tasks with solutions and answers, for each topic, for all levels of complexity." It is definitely enough to get your hand on solving problems on any topic.

In fact, this is much more than just a simulator - a whole training program. If needed, you can also use it for FREE.

Access to all texts and programs is provided for the entire lifetime of the site.

In conclusion...

If you don't like our tasks, find others. Just don't stop with theory.

“Understood” and “I know how to solve” are completely different skills. You need both.

Find problems and solve!


Yes, yes: arithmetic progression is not a toy for you :)

Well, friends, if you are reading this text, then the internal cap evidence tells me that you still do not know what an arithmetic progression is, but you really (no, like this: SOOOOO!) want to know. Therefore, I will not torment you with long introductions and will immediately get down to business.

To start, a couple of examples. Consider several sets of numbers:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

What do all these sets have in common? At first glance, nothing. But actually there is something. Namely: each next element differs from the previous one by the same number.

Judge for yourself. The first set is just consecutive numbers, each one more than the previous one. In the second case, the difference between adjacent numbers is already equal to five, but this difference is still constant. In the third case, there are roots in general. However, $2\sqrt(2)=\sqrt(2)+\sqrt(2)$, while $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, i.e. in which case each next element simply increases by $\sqrt(2)$ (and don't be scared that this number is irrational).

So: all such sequences are just called arithmetic progressions. Let's give a strict definition:

Definition. A sequence of numbers in which each next differs from the previous one by exactly the same amount is called an arithmetic progression. The very amount by which the numbers differ is called the progression difference and is most often denoted by the letter $d$.

Notation: $\left(((a)_(n)) \right)$ is the progression itself, $d$ is its difference.

And just a couple of important remarks. First, progression is considered only orderly sequence of numbers: they are allowed to be read strictly in the order in which they are written - and nothing else. You can't rearrange or swap numbers.

Secondly, the sequence itself can be either finite or infinite. For example, the set (1; 2; 3) is obviously a finite arithmetic progression. But if you write something like (1; 2; 3; 4; ...) - this is already an infinite progression. The ellipsis after the four, as it were, hints that quite a lot of numbers go further. Infinitely many, for example. :)

I would also like to note that progressions are increasing and decreasing. We have already seen increasing ones - the same set (1; 2; 3; 4; ...). Here are examples of decreasing progressions:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

Okay, okay: the last example may seem overly complicated. But the rest, I think, you understand. Therefore, we introduce new definitions:

Definition. An arithmetic progression is called:

  1. increasing if each next element is greater than the previous one;
  2. decreasing, if, on the contrary, each subsequent element is less than the previous one.

In addition, there are so-called "stationary" sequences - they consist of the same repeating number. For example, (3; 3; 3; ...).

Only one question remains: how to distinguish an increasing progression from a decreasing one? Fortunately, everything here depends only on the sign of the number $d$, i.e. progression differences:

  1. If $d \gt 0$, then the progression is increasing;
  2. If $d \lt 0$, then the progression is obviously decreasing;
  3. Finally, there is the case $d=0$ — in this case the entire progression is reduced to a stationary sequence of identical numbers: (1; 1; 1; 1; ...), etc.

Let's try to calculate the difference $d$ for the three decreasing progressions above. To do this, it is enough to take any two adjacent elements (for example, the first and second) and subtract from the number on the right, the number on the left. It will look like this:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

As you can see, in all three cases the difference really turned out to be negative. And now that we have more or less figured out the definitions, it's time to figure out how progressions are described and what properties they have.

Members of the progression and the recurrent formula

Since the elements of our sequences cannot be interchanged, they can be numbered:

\[\left(((a)_(n)) \right)=\left\( ((a)_(1)),\ ((a)_(2)),((a)_(3 )),... \right\)\]

Individual elements of this set are called members of the progression. They are indicated in this way with the help of a number: the first member, the second member, and so on.

In addition, as we already know, neighboring members of the progression are related by the formula:

\[((a)_(n))-((a)_(n-1))=d\Rightarrow ((a)_(n))=((a)_(n-1))+d \]

In short, to find the $n$th term of the progression, you need to know the $n-1$th term and the difference $d$. Such a formula is called recurrent, because with its help you can find any number, only knowing the previous one (and in fact, all the previous ones). This is very inconvenient, so there is a more tricky formula that reduces any calculation to the first term and the difference:

\[((a)_(n))=((a)_(1))+\left(n-1 \right)d\]

You have probably come across this formula before. They like to give it in all sorts of reference books and reshebniks. And in any sensible textbook on mathematics, it is one of the first.

However, I suggest you practice a little.

Task number 1. Write down the first three terms of the arithmetic progression $\left(((a)_(n)) \right)$ if $((a)_(1))=8,d=-5$.

Decision. So, we know the first term $((a)_(1))=8$ and the progression difference $d=-5$. Let's use the formula just given and substitute $n=1$, $n=2$ and $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\left(2-1 \right)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \right)d=((a)_(1))+2d=8-10= -2. \\ \end(align)\]

Answer: (8; 3; -2)

That's all! Note that our progression is decreasing.

Of course, $n=1$ could not have been substituted - we already know the first term. However, by substituting the unit, we made sure that even for the first term our formula works. In other cases, everything came down to banal arithmetic.

Task number 2. Write out the first three terms of an arithmetic progression if its seventh term is −40 and its seventeenth term is −50.

Decision. We write the condition of the problem in the usual terms:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(align) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(align) \right.\]

\[\left\( \begin(align) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(align) \right.\]

I put the sign of the system because these requirements must be met simultaneously. And now we note that if we subtract the first equation from the second equation (we have the right to do this, because we have a system), we get this:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\ & 10d=-10; \\&d=-1. \\ \end(align)\]

Just like that, we found the progression difference! It remains to substitute the found number in any of the equations of the system. For example, in the first:

\[\begin(matrix) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((a)_(1))=-40+6=-34. \\ \end(matrix)\]

Now, knowing the first term and the difference, it remains to find the second and third terms:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(align)\]

Ready! Problem solved.

Answer: (-34; -35; -36)

Pay attention to a curious property of the progression that we discovered: if we take the $n$th and $m$th terms and subtract them from each other, then we get the difference of the progression multiplied by the number $n-m$:

\[((a)_(n))-((a)_(m))=d\cdot \left(n-m \right)\]

Simple but very useful property, which you definitely need to know - with its help you can significantly speed up the solution of many problems in progressions. Here is a prime example of this:

Task number 3. The fifth term of the arithmetic progression is 8.4, and its tenth term is 14.4. Find the fifteenth term of this progression.

Decision. Since $((a)_(5))=8.4$, $((a)_(10))=14.4$, and we need to find $((a)_(15))$, we note following:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5d. \\ \end(align)\]

But by condition $((a)_(10))-((a)_(5))=14.4-8.4=6$, so $5d=6$, whence we have:

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14.4=20.4. \\ \end(align)\]

Answer: 20.4

That's all! We did not need to make any systems of equations and calculate the first term and the difference - everything was decided in just a couple of lines.

Now let's consider another type of problem - the search for negative and positive members of the progression. It is no secret that if the progression increases, while its first term is negative, then sooner or later positive terms will appear in it. And vice versa: the terms of a decreasing progression will sooner or later become negative.

At the same time, it is far from always possible to find this moment “on the forehead”, sequentially sorting through the elements. Often, tasks are designed in such a way that without knowing the formulas, calculations would take several sheets - we would simply fall asleep until we found the answer. Therefore, we will try to solve these problems in a faster way.

Task number 4. How many negative terms in an arithmetic progression -38.5; -35.8; …?

Decision. So, $((a)_(1))=-38.5$, $((a)_(2))=-35.8$, from which we immediately find the difference:

Note that the difference is positive, so the progression is increasing. The first term is negative, so indeed at some point we will stumble upon positive numbers. The only question is when this will happen.

Let's try to find out: how long (i.e., up to what natural number $n$) the negativity of the terms is preserved:

\[\begin(align) & ((a)_(n)) \lt 0\Rightarrow ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38.5+\left(n-1 \right)\cdot 2.7 \lt 0;\quad \left| \cdot 10 \right. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Rightarrow ((n)_(\max ))=15. \\ \end(align)\]

The last line needs clarification. So we know that $n \lt 15\frac(7)(27)$. On the other hand, only integer values ​​of the number will suit us (moreover: $n\in \mathbb(N)$), so the largest allowable number is precisely $n=15$, and in no case 16.

Task number 5. In arithmetic progression $(()_(5))=-150,(()_(6))=-147$. Find the number of the first positive term of this progression.

This would be exactly the same problem as the previous one, but we don't know $((a)_(1))$. But the neighboring terms are known: $((a)_(5))$ and $((a)_(6))$, so we can easily find the progression difference:

In addition, let's try to express the fifth term in terms of the first and the difference using the standard formula:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162. \\ \end(align)\]

Now we proceed by analogy with the previous problem. We find out at what point in our sequence positive numbers will appear:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Rightarrow ((n)_(\min ))=56. \\ \end(align)\]

The minimum integer solution of this inequality is the number 56.

Please note: in last assignment everything came down to strict inequality, so the option $n=55$ will not suit us.

Now that we have learned how to solve simple problems, let's move on to more complex ones. But first, let's learn another very useful property of arithmetic progressions, which will save us a lot of time and unequal cells in the future. :)

Arithmetic mean and equal indents

Consider several consecutive terms of the increasing arithmetic progression $\left(((a)_(n)) \right)$. Let's try to mark them on a number line:

Arithmetic progression members on the number line

I specifically noted the arbitrary members $((a)_(n-3)),...,((a)_(n+3))$, and not any $((a)_(1)) ,\ ((a)_(2)),\ ((a)_(3))$ etc. Because the rule, which I will now tell you, works the same for any "segments".

And the rule is very simple. Let's remember the recursive formula and write it down for all marked members:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(align)\]

However, these equalities can be rewritten differently:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(align)\]

Well, so what? But the fact that the terms $((a)_(n-1))$ and $((a)_(n+1))$ lie at the same distance from $((a)_(n)) $. And this distance is equal to $d$. The same can be said about the terms $((a)_(n-2))$ and $((a)_(n+2))$ - they are also removed from $((a)_(n))$ by the same distance equal to $2d$. You can continue indefinitely, but the picture illustrates the meaning well


The members of the progression lie at the same distance from the center

What does this mean for us? This means that you can find $((a)_(n))$ if the neighboring numbers are known:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

We have deduced a magnificent statement: each member of an arithmetic progression is equal to the arithmetic mean of the neighboring members! Moreover, we can deviate from our $((a)_(n))$ to the left and to the right not by one step, but by $k$ steps — and still the formula will be correct:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

Those. we can easily find some $((a)_(150))$ if we know $((a)_(100))$ and $((a)_(200))$, because $(( a)_(150))=\frac(((a)_(100))+((a)_(200)))(2)$. At first glance, it may seem that this fact does not give us anything useful. However, in practice, many tasks are specially "sharpened" for the use of the arithmetic mean. Take a look:

Task number 6. Find all values ​​of $x$ such that the numbers $-6((x)^(2))$, $x+1$ and $14+4((x)^(2))$ are consecutive members of an arithmetic progression (in specified order).

Decision. Since the indicated numbers are members of a progression, the arithmetic mean condition is satisfied for them: central element$x+1$ can be expressed in terms of neighboring elements:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \end(align)\]

The result is a classic quadratic equation. Its roots: $x=2$ and $x=-3$ are the answers.

Answer: -3; 2.

Task number 7. Find the values ​​of $$ such that the numbers $-1;4-3;(()^(2))+1$ form an arithmetic progression (in that order).

Decision. Again, we express the middle term in terms of the arithmetic mean of neighboring terms:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2\right.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \end(align)\]

Another quadratic equation. And again two roots: $x=6$ and $x=1$.

Answer: 1; 6.

If in the process of solving a problem you get some brutal numbers, or you are not completely sure of the correctness of the answers found, then there is a wonderful trick that allows you to check: did we solve the problem correctly?

Let's say in problem 6 we got answers -3 and 2. How can we check that these answers are correct? Let's just plug them into the original condition and see what happens. Let me remind you that we have three numbers ($-6(()^(2))$, $+1$ and $14+4(()^(2))$), which should form an arithmetic progression. Substitute $x=-3$:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \\ &x+1=-2; \\ & 14+4((x)^(2))=50. \end(align)\]

We got the numbers -54; −2; 50 that differ by 52 is undoubtedly an arithmetic progression. The same thing happens for $x=2$:

\[\begin(align) & x=2\Rightarrow \\ & -6((x)^(2))=-24; \\ &x+1=3; \\ & 14+4((x)^(2))=30. \end(align)\]

Again a progression, but with a difference of 27. Thus, the problem is solved correctly. Those who wish can check the second task on their own, but I’ll say right away: everything is correct there too.

In general, while solving the last tasks, we stumbled upon another interesting fact, which also needs to be remembered:

If three numbers are such that the second is the average of the first and last, then these numbers form an arithmetic progression.

In the future, understanding this statement will allow us to literally “construct” the necessary progressions based on the condition of the problem. But before we engage in such a "construction", we should pay attention to one more fact, which directly follows from what has already been considered.

Grouping and sum of elements

Let's go back to the number line again. We note there several members of the progression, between which, perhaps. worth a lot of other members:

6 elements marked on the number line

Let's try to express the "left tail" in terms of $((a)_(n))$ and $d$, and the "right tail" in terms of $((a)_(k))$ and $d$. It's very simple:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(align)\]

Now note that the following sums are equal:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= S. \end(align)\]

Simply put, if we consider as a start two elements of the progression, which in total are equal to some number $S$, and then we start stepping from these elements in opposite directions (towards each other or vice versa to move away), then the sums of the elements that we will stumble upon will also be equal$S$. This can be best represented graphically:


Same indents give equal sums

Understanding this fact will allow us to solve problems of a fundamentally higher level of complexity than those that we considered above. For example, these:

Task number 8. Determine the difference of an arithmetic progression in which the first term is 66, and the product of the second and twelfth terms is the smallest possible.

Decision. Let's write down everything we know:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min . \end(align)\]

So, we do not know the difference of the progression $d$. Actually, the whole solution will be built around the difference, since the product $((a)_(2))\cdot ((a)_(12))$ can be rewritten as follows:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \right). \end(align)\]

For those in the tank: I've taken the common factor 11 out of the second bracket. Thus, the desired product is a quadratic function with respect to the variable $d$. Therefore, consider the function $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ - its graph will be a parabola with branches up, because if we open the brackets, we get:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(align)\]

As you can see, the coefficient with the highest term is 11 - this is a positive number, so we are really dealing with a parabola with branches up:


graph of a quadratic function - parabola

Please note: this parabola takes its minimum value at its vertex with the abscissa $((d)_(0))$. Of course, we can calculate this abscissa according to the standard scheme (there is a formula $((d)_(0))=(-b)/(2a)\;$), but it would be much more reasonable to note that the desired vertex lies on the axis symmetry of the parabola, so the point $((d)_(0))$ is equidistant from the roots of the equation $f\left(d \right)=0$:

\[\begin(align) & f\left(d\right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(align)\]

That is why I was in no hurry to open the brackets: in the original form, the roots were very, very easy to find. Therefore, the abscissa is equal to the arithmetic mean of the numbers −66 and −6:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

What gives us the discovered number? With it, the required product takes the smallest value (by the way, we did not calculate $((y)_(\min ))$ - this is not required of us). At the same time, this number is the difference of the initial progression, i.e. we found the answer. :)

Answer: -36

Task number 9. Insert three numbers between the numbers $-\frac(1)(2)$ and $-\frac(1)(6)$ so that together with the given numbers they form an arithmetic progression.

Decision. In fact, we need to make a sequence of five numbers, with the first and last number already known. Denote the missing numbers by the variables $x$, $y$ and $z$:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

Note that the number $y$ is the "middle" of our sequence - it is equidistant from the numbers $x$ and $z$, and from the numbers $-\frac(1)(2)$ and $-\frac(1)( 6)$. And if from the numbers $x$ and $z$ we are in this moment we cannot get $y$, then the situation is different with the ends of the progression. Remember the arithmetic mean:

Now, knowing $y$, we will find the remaining numbers. Note that $x$ lies between $-\frac(1)(2)$ and $y=-\frac(1)(3)$ just found. So

Arguing similarly, we find the remaining number:

Ready! We found all three numbers. Let's write them down in the answer in the order in which they should be inserted between the original numbers.

Answer: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Task number 10. Between the numbers 2 and 42, insert several numbers that, together with the given numbers, form an arithmetic progression, if it is known that the sum of the first, second, and last of the inserted numbers is 56.

Decision. An even more difficult task, which, however, is solved in the same way as the previous ones - through the arithmetic mean. The problem is that we don't know exactly how many numbers to insert. Therefore, for definiteness, we assume that after inserting there will be exactly $n$ numbers, and the first of them is 2, and the last is 42. In this case, the desired arithmetic progression can be represented as:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \right\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Note, however, that the numbers $((a)_(2))$ and $((a)_(n-1))$ are obtained from the numbers 2 and 42 standing at the edges by one step towards each other, i.e. . to the center of the sequence. And this means that

\[((a)_(2))+((a)_(n-1))=2+42=44\]

But then the above expression can be rewritten like this:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \end(align)\]

Knowing $((a)_(3))$ and $((a)_(1))$, we can easily find the progression difference:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\Rightarrow d=5. \\ \end(align)\]

It remains only to find the remaining members:

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(align)\]

Thus, already at the 9th step we will come to the left end of the sequence - the number 42. In total, only 7 numbers had to be inserted: 7; 12; 17; 22; 27; 32; 37.

Answer: 7; 12; 17; 22; 27; 32; 37

Text tasks with progressions

In conclusion, I would like to consider a couple of relatively simple problems. Well, as simple ones: for most students who study mathematics at school and have not read what is written above, these tasks may seem like a gesture. Nevertheless, it is precisely such tasks that come across in the OGE and the USE in mathematics, so I recommend that you familiarize yourself with them.

Task number 11. The team produced 62 parts in January, and in each subsequent month they produced 14 more parts than in the previous one. How many parts did the brigade produce in November?

Decision. Obviously, the number of parts, painted by month, will be an increasing arithmetic progression. And:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(align)\]

November is the 11th month of the year, so we need to find $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

Therefore, 202 parts will be manufactured in November.

Task number 12. The bookbinding workshop bound 216 books in January, and each month it bound 4 more books than the previous month. How many books did the workshop bind in December?

Decision. All the same:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(align)$

December is the last, 12th month of the year, so we are looking for $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

This is the answer - 260 books will be bound in December.

Well, if you have read this far, I hasten to congratulate you: you have successfully completed the “young fighter course” in arithmetic progressions. We can safely move on to the next lesson, where we will study the progression sum formula, as well as important and very useful consequences from it.