Рао радиоактивные отходы. В чём опасность радиоактивных отходов

Вывоз, переработка и утилизация отходов с 1 по 5 класс опасности

Работаем со всеми регионами России. Действующая лицензия. Полный комплект закрывающих документов. Индивидуальный подход к клиенту и гибкая ценовая политика.

С помощью данной формы вы можете оставить заявку на оказание услуг, запросить коммерческое предложение или получить бесплатную консультацию наших специалистов.

Отправить

В 20 веке безостановочный поиск идеального источника энергии, казалось бы завершился. Этим источником стали ядра атомов и реакции, происходящие в них - во всем мире началась активная разработка ядерного оружия и строительство атомных электростанций.

Но планета быстро столкнулась с проблемой – переработки и уничтожения ядерных отходов. Энергия атомных реакторов несет в себе массу опасностей, так же как и отходы данной отрасли. До сих пор тщательно проработанной технологии переработки не существует, в то время как сама сфера активно развивается. Поэтому безопасность зависит в первую очередь от правильной утилизации.

Определение

Ядерные отходы содержат в себе радиоактивные изотопы определенных химических элементов. В России, согласно определению, данному в ФЗ №170 «Об использовании атомной энергии» (от 21 ноября 1995 года), дальнейшее использование таких отходов не предусматривается.

Главная опасность материалов заключается в излучении гигантских доз радиации, губительно действующей на живой организм. Последствиями радиоактивного воздействия становятся генетические нарушения, лучевая болезнь и смерть.

Карта классификаций

Основным источником ядерных материалов в России являются сфера атомной энергетики и военные разработки. Все отходы ядерного производства имеют три степени радиации, знакомые многим еще из курса физики:

  • Альфа - излучающие.
  • Бета - излучающие.
  • Гамма - излучающие.

Первые считаются самыми безобидными, так как дают неопасный уровень радиации, в отличие от двух других. Правда, это не мешает им входить в класс наиболее опасных отходов.


В целом, карта классификаций ядерных отходов в России делит их на три вида:

  1. Твердый ядерный мусор. К нему относится огромное количество материалов технического обслуживания в сферах энергетики, одежда персонала, мусор, скапливающийся в ходе работы. Такие отходы сжигают в печах, после чего пепел смешивается со специальной цементной смесью. Ее заливают в бочки, запаивают и отправляют в хранилище. Захоронение подробно описано ниже.
  2. Жидкие. Процесс работы атомных реакторов невозможен без использования технологических растворов. Кроме того, сюда относится вода, которую применяют для обработки спец костюмов и мытья работников. Жидкости тщательно выпаривают, а дальше происходит захоронение. Жидкие отходы нередко перерабатываются и используются в качестве топлива для атомных реакторов.
  3. Элементы конструкции реакторов, транспорта и средств технического контроля на предприятии составляют отдельную группу. Их утилизация - самая дорогостоящая. На сегодняшний день существует два выхода: установка саркофага или демонтаж с его частичной дезактивацией и дальнейшее отправление в хранилище на захоронение.

Карта ядерных отходов в России также определяет низкоактивные и высокоактивные:

  • Низкоактивные отходы — возникают в процессе деятельности лечебных учреждений, институтов и исследовательских центров. Здесь радиоактивные вещества применяются для проведения химических тестов. Уровень радиации, излучаемой этими материалами, очень низок. Правильная утилизация позволяет превратить опасный мусор в обычный приблизительно за несколько недель, после чего его можно уничтожить как обычные отходы.
  • Высокоактивные отходы - это отработанное топливо реакторов и материалы, применяемые в военной промышленности для разработки ядерного оружия. Топливо на станциях представляет собой специальные стержни с радиоактивным веществом. Реактор функционирует примерно 12 — 18 месяцев, после чего топливо необходимо менять. Объем отходов при этом просто колоссальный. И эта цифра растет во всех странах, развивающих сферу атомной энергетики. Утилизация высокоактивных отходов должна учитывать все нюансы, чтобы избежать катастрофы для окружающей среды и человека.

Переработка и утилизация

На данный момент существует несколько методов утилизации ядерных отходов. Все они имеют свои преимущества и недочеты, но как ни крути, не позволяют полностью избавиться от опасности радиоактивного воздействия.

Захоронение

Захоронение отходов - наиболее перспективный метод утилизации, который особенно активно применяется в России. Сначала происходит процесс витрификации или «остекловывания» отходов. Отработавшее вещество кальцинируют, после чего в смесь добавляется кварц, и такое «жидкое стекло» вливается в специальные цилиндрические формы из стали. Полученный стеклянный материал устойчив к воздействию воды, что уменьшает возможность попадания радиоактивных элементов в среду.

Готовые цилиндры заваривают и тщательно моют, избавляясь от малейшего загрязнения. Далее они отправляются в хранилище на очень длительное время. Хранилище устраивают на геологических устойчивых территориях, чтобы хранилище не было повреждено.

Геологическое захоронение осуществляют на глубине более 300 метров таким образом, чтобы в течение долгого времени отходы не нуждались в дальнейшем обслуживании.

Сжигание

Часть ядерных материалов, как уже говорилось выше, представляет собой непосредственные результаты производства, а своего рода побочный мусор в сфере энергетики. Это материалы, в ходе производства подвергшиеся облучению: макулатура, дерево, одежда, бытовой мусор.

Все это сжигается в специально спроектированных печах, позволяющих минимизировать уровень токсичных веществ в атмосферу. Пепел, среди прочих отходов, подвергается цементированию.

Цементирование

Захоронение (один из способов) ядерных отходов в России путем цементирования – одна из самых распространенных практик. Суть заключается в помещении облученных материалов и радиоактивных элементов в специальные контейнеры, которые затем заливают специальным раствором. В состав такого раствора входит целый коктейль из химических элементов.

В результате он практически не подвергается воздействию внешней среды, что позволяет достичь практически неограниченного срока. Но стоит сделать оговорку, что подобное захоронение возможно только для утилизации отходов среднего уровня опасности.

Уплотнение

Давняя и достаточно надежная практика, нацеленная на захоронение и уменьшение объема отходов. Она не применяется для переработки основных топливных материалов, но позволяет обработать другие отходы низкого уровня опасности. В данной технологии применяются гидравлические и пневматические прессы с низкой силой давления.

Повторное применение

Использование радиоактивного материала в области энергетики происходит не в полной мере – в силу специфики активности данных веществ. Отработавшие свое, отходы все еще остаются потенциальным источником энергии для реакторов.

В современном мире и тем более в России ситуация с энергетическими ресурсами довольно серьезная, и потому вторичное использование ядерных материалов в качестве топлива для реакторов уже не кажется невероятным.

Сегодня существуют методы, позволяющие применять отработавшее сырье для применения в сферах энергетики. Радиоизотопы, содержащиеся в отходах, используют для обработки пищевых продуктов и в качестве «батарейки» для работы термоэлектрических реакторов.

Но пока технология еще находится в развитии, и идеального метода переработки не найдено. Тем не менее, переработка и уничтожение ядерных отходов позволяет частично разрешить вопрос с подобным мусором, используя его в качестве топлива для реакторов.

К сожалению в России подобный метод избавления от ядерного мусора практически не развивается.

Объемы

В России во всем мире объемы ядерных отходов, отправляющихся на захоронение, составляют десятки тысяч кубометров ежегодно. Каждый год европейские хранилища принимают около 45 тысяч кубометров отходов, а в США такой объем поглощает лишь один полигон в штате Невада.

Ядерные отходы и работы связанные с ними за рубежом и в России – это деятельность специализированных предприятий, снабженных качественной техникой и оборудованием. На предприятиях отходы подвергаются различным способам обработки, описанным выше. В результате удается уменьшить объем, снизить уровень опасности и даже использовать некоторый мусор в сфере энергетики как топливо для атомных реакторов.

Мирный атом давно доказал, что все не так просто. Область энергетики развивается, и будет развиваться. То же можно сказать и о военной сфере. Но если на выброс других отходов мы иногда закрываем глаза, неправильно утилизированные ядерный мусор может стать причиной тотальной катастрофы для всего человечества. Поэтому этот вопрос требует скорейшего решения, пока не поздно.

Радиоактивные отходы

Радиоактивные отходы (РАО ) - отходы, содержащие радиоактивные изотопы химических элементов и не имеющие практической ценности.

Согласно российскому «Закону об использовании атомной энергии» (от 21 ноября 1995 года № 170-ФЗ) радиоактивные отходы (РАО) - это ядерные материалы и радиоактивные вещества, дальнейшее использование которых не предусматривается. По российскому законодательству, ввоз радиоактивных отходов в страну запрещен.

Часто путают и считают синонимами радиоактивные отходы и отработавшее ядерное топливо . Следует различать эти понятия. Радиоактивные отходы, это материалы, использование которых не предусматривается. Отработавшее ядерное топливо представляет собой тепловыделяющие элементы, содержащие остатки ядерного топлива и множество продуктов деления, в основном 137 Cs и 90 Sr , широко применяемые в промышленности, сельском хозяйстве, медицине и научной деятельности. Поэтому оно является ценным ресурсом, в результате переработки которого получают свежее ядерное топливо и изотопные источники.

Источники появления отходов

Радиоактивные отходы образуются в различных формах с весьма разными физическими и химическими характеристиками, такими, как концентрации и периоды полураспада составляющих их радионуклидов. Эти отходы могут образовываться:

  • в газообразной форме, как, например, вентиляционные выбросы установок, где обрабатываются радиоактивные материалы;
  • в жидкой форме, начиная от растворов сцинтилляционных счётчиков из исследовательских установок до жидких высокоактивных отходов, образующихся при переработке отработавшего топлива;
  • в твёрдой форме (загрязнённые расходные материалы, стеклянная посуда из больниц, медицинских исследовательских установок и радиофармацевтических лабораторий, остеклованные отходы от переработки топлива или отработавшего топлива от АЭС , когда оно считается отходами).

Примеры источников появления радиоактивных отходов в человеческой деятельности:

Работа с такими веществами регламентируются санитарными правилами, выпущенными Санэпиднадзором .

  • Уголь . Уголь содержит небольшое число радионуклидов, таких как уран или торий, однако содержание этих элементов в угле меньше их средней концентрации в земной коре.

Их концентрация возрастает в зольной пыли, поскольку они практически не горят.

Однако радиоактивность золы также очень мала, она примерно равна радиоактивности чёрного глинистого сланца и меньше, чем у фосфатных пород, но представляет известную опасность, так как некоторое количество зольной пыли остаётся в атмосфере и вдыхается человеком. При этом совокупный объём выбросов достаточно велик и составляет эквивалент 1000 тонн урана в России и 40000 тонн во всём мире.

Классификация

Условно радиоактивные отходы делятся на:

  • низкоактивные (делятся на четыре класса: A, B, C и GTCC (самый опасный);
  • среднеактивные (законодательство США не выделяет этот тип РАО в отдельный класс, термин в основном используется в странах Европы);
  • высокоактивные.

Законодательство США выделяет также трансурановые РАО. К этому классу относятся отходы, загрязненные альфа-излучающими трансурановыми радионуклидами, с периодами полураспада более 20 лет и концентрацией большей 100 нКи /г, вне зависимости от их формы или происхождения, исключая высокоактивные РАО . В связи с долгим периодом распада трансурановых отходов их захоронение проходит тщательнее, чем захоронение малоактивных и среднеактивных отходов. Также особое внимание этому классу отходов выделяется потому, что все трансурановые элементы являются искусственными и поведение в окружающей среде и в организме человека некоторых из них уникально.

Ниже приведена классификация жидких и твёрдых радиоактивных отходов в соответствии с «Основными санитарными правилами обеспечения радиационной безопасности" (ОСПОРБ 99/2010).

Одним из критериев такой классификации является тепловыделение. У низкоактивных РАО тепловыделение чрезвычайно мало. У среднеактивных оно существенно, но активный отвод тепла не требуется. У высокоактивных РАО тепловыделение настолько велико, что они требуют активного охлаждения.

Обращение с радиоактивными отходами

Изначально считалось, что достаточной мерой является рассеяние радиоактивных изотопов в окружающей среде , по аналогии с отходами производства в других отраслях промышленности . На предприятии «Маяк» в первые годы работы все радиоактивные отходы сбрасывались в близлежащие водоёмы. Вследствие чего загрязнёнными оказались теченский каскад водоёмов и сама река Теча .

Позже выяснилось, что за счёт естественных природных и биологических процессов радиоактивные изотопы концентрируются в тех или иных подсистемах биосферы (в основном в животных, в их органах и тканях), что повышает риски облучения населения (за счёт перемещения больших концентраций радиоактивных элементов и возможного их попадания с пищей в организм человека). Поэтому отношение к радиоактивным отходам было изменено.

1) Защита здоровья человека . Обращение с радиоактивными отходами осуществляется таким образом, чтобы обеспечить приемлемый уровень защиты здоровья человека.

2) Охрана окружающей среды . Обращение с радиоактивными отходами осуществляется таким образом, чтобы обеспечить приемлемый уровень охраны окружающей среды.

3) Защита за пределами национальных границ . Обращение с радиоактивными отходами осуществляется таким образом, чтобы учитывались возможные последствия для здоровья человека и окружающей среды за пределами национальных границ.

4) Защита будущих поколений . Обращение с радиоактивными отходами осуществляется таким образом, чтобы предсказуемые последствия для здоровья будущих поколений не превышали соответствующие уровни последствий, которые приемлемы в наши дни.

5) Бремя для будущих поколений . Обращение с радиоактивными отходами осуществляется таким образом, чтобы не налагать чрезмерного бремени на будущие поколения.

6) Национальная правовая структура . Обращение с радиоактивными отходами осуществляется в рамках соответствующей национальной правовой структуры, предусматривающей чёткое распределение обязанностей и обеспечение независимых регулирующих функций.

7) Контроль за образованием радиоактивных отходов . Образование радиоактивных отходов удерживается на минимальном практически осуществимом уровне.

8) Взаимозависимости образования радиоактивных отходов и обращения с ними . Надлежащим образом учитываются взаимозависимости между всеми стадиями образования радиоактивных отходов и обращения с ними.

9) Безопасность установок . Безопасность установок для обращения с радиоактивными отходами надлежащим образом обеспечивается на протяжении всего срока их службы.

Основные стадии обращения с радиоактивными отходами

  • При хранении радиоактивных отходов их следует содержать таким образом, чтобы:
    • обеспечивались их изоляция, охрана и мониторинг окружающей среды;
    • по возможности облегчались действия на последующих этапах (если они предусмотрены).

В некоторых случаях хранение может осуществляться главным образом по техническим соображениям, например, хранение радиоактивных отходов, содержащих в основном короткоживущие радионуклиды, в целях их распада и последующего сброса в санкционированных пределах, или хранение радиоактивных отходов высокого уровня активности до их захоронения в геологических формациях в целях уменьшения тепловыделения.

  • Предварительная обработка отходов является первоначальной стадией обращения с отходами. Она включает сбор, регулирование химического состава и дезактивацию и к ней может относиться период промежуточного хранения. Эта стадия очень важна, так как во многих случаях в ходе предварительной обработки представляется наилучшая возможность для разделения потоков отходов.
  • Обработка радиоактивных отходов включает операции, цель которых состоит в повышении безопасности или экономичности посредством изменения характеристик радиоактивных отходов. Основные концепции обработки: уменьшение объёма, удаление радионуклидов и изменение состава. Примеры:
    • сжигание горючих отходов или уплотнение сухих твёрдых отходов;
    • выпаривание , фильтрация или ионный обмен потоков жидких отходов;
    • осаждение или флокуляция химических веществ.

Капсула для радиоактивных отходов

  • Кондиционирование радиоактивных отходов состоит из таких операций, в процессе которых радиоактивным отходам придают форму, приемлемую для перемещения, перевозки, хранения и захоронения. Эти операции могут включать иммобилизацию радиоактивных отходов, помещение отходов в контейнеры и обеспечение дополнительной упаковки. Общепринятые методы иммобилизации включают отверждение жидких радиоактивных отходов низкого и среднего уровней активности путём их включения в цемент (цементирование) или битум (битумирование), а также остекловывание жидких радиоактивных отходов. Иммобилизованные отходы в свою очередь в зависимости от характера и их концентрации могут упаковываться в различные контейнеры, начиная от обычных 200-литровых стальных бочек до имеющих сложную конструкцию контейнеров с толстыми стенками. В многих случаях обработка и кондиционирование проводятся в тесной связи друг с другом.
  • Захоронение главным образом состоит в том, что радиоактивные отходы помещаются в установку для захоронения при соответствующем обеспечении безопасности без намерения их изъятия и без обеспечения долгосрочного наблюдения за хранилищем и технического обслуживания. Безопасность в основном достигается посредством концентрации и удержания, что предусматривает изоляцию надлежащим образом концентрированных радиоактивных отходов в установке для захоронения.

Технологии

Обращение со среднеактивными РАО

Обычно в ядерной индустрии среднеактивные РАО подвергаются ионному обмену или другим методам, целью которых является концентрация радиоактивности в малом объёме. После обработки уже гораздо менее радиоактивное тело полностью обезвреживают. Существует возможность использовать гидроксид железа в качестве флокулянта для удаления радиоактивных металлов из водных растворов. После абсорбции радиоизотопов гидроксидом железа полученный осадок помещают в металлический барабан, где он перемешивается с цементом, образуя твердую смесь. Для большей стабильности и долговечности бетон изготовляют из зольной пыли или печного шлака и портландцемента (в отличие от обычного бетона, который состоит из портландцемента, гравия и песка).

Обращение с высокоактивными РАО

Удаление малоактивных РАО

Перевозка опок с высокоактивными РАО на поезде, Великобритания

Хранение

Для временного хранения высокоактивных РАО предназначены резервуары для хранения отработанного ядерного топлива и хранилища с сухотарными бочками, позволяющие распасться короткоживущим изотопам перед дальнейшей переработкой.

Витрификация

Долговременное хранение РАО требует консервации отходов в форме, которая не будет вступать в реакции и разрушаться на протяжении долгого времени. Одним из способов достижения подобного состояния является витрификация (или остеклование). В настоящее время в Селлафилде (Великобритания) высокоактивные РАО (очищенные продукты первой стадии пурекс-процесса) смешивают с сахаром и затем кальцинируют. Кальцинирование подразумевает прохождение отходов через нагретую вращающуюся трубу и ставит целью испарение воды и деазотирование продуктов деления, чтобы повысить стабильность получаемой стекловидной массы.

В полученное вещество, находящееся в индукционной печи, постоянно добавляют измельченное стекло. В результате получается новая субстанция, в которой при затвердении отходы связываются со стеклянной матрицей. Это вещество в расплавленном состоянии вливается в цилиндры из легированной стали . Охлаждаясь, жидкость затвердевает, превращаясь в стекло, которое является крайне устойчивым к воздействию воды. По данным международного технологического общества, потребуется около миллиона лет, чтобы 10 % такого стекла растворилось в воде.

После заполнения цилиндр заваривают, затем моют. После обследования на предмет внешнего загрязнения стальные цилиндры отправляют в подземные хранилища. Такое состояние отходов остаётся неизменным в течение многих тысяч лет.

Стекло внутри цилиндра имеет гладкую чёрную поверхность. В Великобритании вся работа проделывается с использованием камер для работы с высокоактивными веществами. Сахар добавляется для предотвращения образования летучего вещества RuO 4 , содержащего радиоактивный рутений. На Западе к отходам добавляют боросиликатное стекло, идентичное по составу пирексу ; в странах бывшего СССР обычно применяют фосфатное стекло. Количество продуктов деления в стекле должно быть ограничено, так как некоторые элементы (палладий , металлы платиновой группы и теллур) стремятся образовать металлические фазы отдельно от стекла. Один из заводов по витрификации находится в Германии , там перерабатываются отходы деятельности небольшой демонстрационной перерабатывающей фабрики, прекратившей своё существование.

В 1997 году в 20 странах, обладающих большей частью мирового ядерного потенциала, запасы отработанного топлива в хранилищах внутри реакторов составляли 148 тыс. тонн, 59 % из которых были утилизированы. Во внешних хранилищах находилось 78 тыс. тонн отходов, из которых утилизировано 44 %. С учетом темпов утилизации (около 12 тыс. тонн ежегодно), до окончательного устранения отходов ещё достаточно далеко.

Геологическое захоронение

Поиски подходящих мест для глубокого окончательного захоронения отходов в настоящее время ведутся в нескольких странах; ожидается, что первые подобные хранилища вступят в эксплуатацию после 2010 года. Международная исследовательская лаборатория в швейцарском Гримзеле занимается вопросами, посвящёнными захоронению РАО. Швеция говорит о своих планах по прямому захоронению использованного топлива с использованием технологии KBS-3, после того, как шведский парламент счёл её достаточно безопасной. В Германии в настоящее время ведутся дискуссии о поисках места для постоянного хранения РАО, активные протесты заявляют жители деревни Горлебен региона Вендланд . Это место вплоть до 1990 года казалось идеальным для захоронения РАО благодаря своей близости к границам бывшей Германской демократической республики . Сейчас РАО находятся в Горлебене на временном хранении, решение о месте их окончательного захоронения пока не принято. Власти США выбрали местом захоронения Юкка-Маунтин, штат Невада , однако данный проект встретил сильное противодействие и стал темой жарких дискуссий. Существует проект создания международного хранилища высокоактивных РАО, в качестве возможных мест захоронения предлагаются Австралия и Россия . Однако власти Австралии выступают против подобного предложения.

Существуют проекты захоронения РАО в океанах, среди которых - захоронение под абиссальной зоной морского дна, захоронение в зоне субдукции , в результате чего отходы будут медленно опускаться к земной мантии , а также захоронение под природным или искусственным островом. Данные проекты имеют очевидные достоинства и позволят решить на международном уровне неприятную проблему захоронения РАО, но, несмотря на это, в настоящее время они заморожены из-за запрещающих положений морского права. Другая причина состоит в том, что в Европе и Северной Америке всерьёз опасаются утечки из подобного хранилища, что приведет к экологической катастрофе. Реальная возможность подобной опасности не доказана; тем не менее, запреты были усилены после сброса РАО с кораблей. Однако, в будущем о создании океанских хранилищ РАО всерьёз способны задуматься страны, которые не смогут найти других решений данной проблемы.

В 1990-х годах было разработано и запатентовано несколько вариантов конвейерного захоронения в недра радиоактивных отходов. Технология предполагалась следующая: пробуривается стартовая скважина большого диаметра глубиной до 1 км, внутрь опускается капсула, загруженная концентратом радиоактивных отходов весом до 10 т, капсула должна саморазогреваться и в форме «огненного шара» проплавлять земную породу. После заглубления первого «огненного шара» в ту же скважину должна опускаться вторая капсула, затем третья и т. д., создавая некий конвейер.

Повторное использование РАО

Ещё одним применением изотопам, содержащимся в РАО, является их повторное использование. Уже сейчас цезий-137 , стронций-90 , технеций-99 и некоторые другие изотопы используются для облучения пищевых продуктов и обеспечивают работу радиоизотопных термоэлектрических генераторов.

Удаление РАО в космос

Отправка РАО в космос является заманчивой идеей, поскольку РАО навсегда удаляются из окружающей среды. Однако у подобных проектов есть значительные недостатки, один из самых важных - возможность аварии ракеты-носителя. Кроме того, значительное число запусков и большая их стоимость делает это предложение непрактичным. Дело также усложняется тем, что до сих пор не достигнуты международные соглашения по поводу данной проблемы.

Ядерный топливный цикл

Начало цикла

Отходы начального периода ядерного топливного цикла - обычно полученная в результате извлечения урана пустая порода, испускающая альфа-частицы . Она обычно содержит радий и продукты его распада.

Главный побочный продукт обогащения - обеднённый уран, состоящий главным образом из урана-238, с содержанием урана-235 менее 0,3 %. Он находится на хранении в форме UF 6 (отвальный гексафторид урана) и может быть также переведен в форму U 3 O 8 . В небольших количествах обедненный уран находит применение в областях, где ценится его крайне высокая плотность, например при изготовлении килей яхт и противотанковых снарядов. Между тем, в России и за рубежом накопилось несколько миллионов тонн отвального гексафторида урана , планов по дальнейшему использованию которого в обозримой перспективе нет. Отвальный гексафторид урана может использоваться (вместе с повторно используемым плутонием) для создания смешанного оксидного ядерного топлива (которое может иметь спрос при условии строительства в стране в значительных количествах реакторов на быстрых нейтронах) и для разбавления высокообогащенного урана, входящего ранее в состав ядерного оружия . Это разбавление, называемое также обеднением, означает, что любая страна или группировка, получившая в своё распоряжение ядерное топливо, должна будет повторить очень дорогой и сложный процесс обогащения, прежде чем сможет создать оружие.

Окончание цикла

Вещества, в которых подошёл к концу ядерный топливный цикл (в основном это отработавшие топливные стержни), содержат продукты деления, испускающие бета- и гамма-лучи. Они также могут содержать актиноиды , испускающие альфа-частицы, к которым относятся уран-234 (234 U), нептуний-237 (237 Np), плутоний-238 (238 Pu) и америций-241 (241 Am), а иногда даже источники нейтронов, такие как калифорний-252 (252 Cf). Эти изотопы образуются в ядерных реакторах.

Важно различать обработку урана с целью получения топлива и переработку использованного урана. Использованное горючее содержит высокорадиоактивные продукты деления. Многие из них являются поглотителями нейтронов, получив, таким образом, название «нейтронных ядов». В конечном итоге их количество возрастает до такой степени, что, улавливая нейтроны, они останавливают цепную реакцию даже при полном удалении стержней-поглотителей нейтронов .

Достигшее этого состояния топливо необходимо заменить свежим, несмотря на по-прежнему достаточное количество урана-235 и плутония. В настоящее время в США использованное топливо отправляется на хранение. В других странах (в частности, в России, Великобритании, Франции и Японии), это топливо перерабатывается с целью удаления продуктов деления, затем после дообогащения возможно его повторное использование. В России такое топливо называется регенерированным. Процесс переработки включает работу с высокорадиоактивными веществами, а удалённые из топлива продукты деления - это концентрированная форма высокоактивных РАО, так же, как используемые в переработке химикаты.

Для замыкания ядерного топливного цикла предполагается использовать реакторы на быстрых нейтронах , который позволяет перерабатывать топливо, являющееся отходами работы реакторов на тепловых нейтронах .

К вопросу о распространении ядерного оружия

При работе с ураном и плутонием часто рассматривается возможность их использования при создании ядерного оружия. Активные ядерные реакторы и запасы ядерного оружия тщательно охраняются. Однако, высокоактивные РАО из ядерных реакторов могут содержать плутоний. Он идентичен плутонию, используемому в реакторах, и состоит из 239 Pu (идеально подходящего для создания ядерного оружия) и 240 Pu (нежелательный компонент, крайне радиоактивен); эти два изотопа очень тяжело разделить. Более того, высокоактивные РАО из реакторов полны высокорадиоактивных продуктов деления; впрочем, их большая часть - короткоживущие изотопы . Это означает, что возможно захоронение отходов, и через много лет продукты деления распадутся, уменьшив радиоактивность отходов и облегчив работу с плутонием. Более того, нежелательный изотоп 240 Pu распадается быстрее, чем 239 Pu, таким образом, качество сырья для создания оружия со временем растет (несмотря на уменьшение количества). Это вызывает споры о том, что с течением времени хранилища отходов могут превратиться в своеобразные «рудники плутония», из которых относительно легко можно будет добыть сырье для оружия. Против этих предположений говорит тот факт, что период полураспада 240 Pu составляет 6560 лет, а период полураспада 239 Pu - 24110 лет, таким образом, сравнительное обогащение одного изотопа относительно другого произойдет только через 9000 лет (это означает, что в течение этого времени доля 240 Pu в веществе, состоящем из нескольких изотопов, самостоятельно уменьшится вдвое - типичное превращение реакторного плутония в оружейный плутоний). Следовательно, «рудники оружейного плутония» если и станут проблемой, то только в очень отдаленном будущем.

Одно из решений этой проблемы - повторно использовать переработанный плутоний в качестве топлива, например, в быстрых ядерных реакторах. Однако само существование фабрик по регенерации ядерного топлива, необходимой для отделения плутония от других элементов, создает возможность для распространения ядерного оружия. В пирометаллургических быстрых реакторах получаемые отходы имеют актиноидную структуру, что не позволяет использовать их для создания оружия.

Переработка ядерного оружия

Отходы от переработки ядерного оружия (в отличие от его изготовления, которое требует первичного сырья из реакторного топлива), не содержат источников бета- и гамма-лучей, за исключением трития и америция. В них содержится гораздо большее число актиноидов, испускающих альфа-лучи, таких как плутоний-239, подвергающийся ядерной реакции в бомбах, а также некоторые вещества с большой удельной радиоактивностью, такие как плутоний-238 или полоний .

В прошлом в качестве ядерного заряда в бомбах предлагались бериллий и высокоактивные альфа-излучатели, такие как полоний. Сейчас альтернативой полонию является плутоний-238. По причинам государственной безопасности, подробные конструкции современных бомб не освещаются в литературе, доступной широкому кругу читателей.

Некоторые модели также содержат (РИТЭГ), в которых в качестве долговечного источника электрической мощности для работы электроники бомбы используется плутоний-238.

Возможно, что расщепляющееся вещество старой бомбы, подлежащее замене, будет содержать продукты распада изотопов плутония. К ним относятся альфа-излучающий нептуний-236, образовавшийся из включений плутония-240, а также некоторое количество урана-235, полученного из плутония-239. Количество этих отходов радиоактивного распада ядра бомбы будет очень мало, и в любом случае они гораздо менее опасны (даже в переводе на радиоактивность как таковую), чем сам плутоний-239.

В результате бета-распада плутония-241 образуется америций-241, увеличение количества америция - большая проблема, чем распад плутония-239 и плутония-240, так как америций является гамма-излучателем (возрастает его внешнее воздействие на рабочих) и альфа-излучателем, способным вызвать выделение тепла. Плутоний может быть отделен от америция различными путями, среди которых - пирометрическая обработка и извлечение при помощи водного/органического растворителя. Видоизмененная технология извлечения плутония из облучённого урана (PUREX) - также один из возможных методов разделения.

В массовой культуре

Реально же воздействие радиоактивных отходов описывается воздействием ионизирующего излучения на вещество и зависит от их состава (какие радиоактивные элементы входят в состав). Радиоактивные отходы не приобретают никаких новых свойств, не становятся опаснее от того, что они - отходы. Их бо́льшая опасность обсуловлена только тем, что часто их состав очень разнообразен (как качественно, так и количественно) и иногда неизвестен, что усложняет оценку степени их опасности, в частности, доз, получаемых в результате аварии.

См. также

Примечания

Ссылки

  • Безопасность при обращении с радиоактивными отходами. Общие положения. НП-058-04
  • Key Radionuclides and Generation Processes (недоступная ссылка)
  • Belgian Nuclear Research Centre - Activities (недоступная ссылка)
  • Belgian Nuclear Research Centre - Scientific Reports (недоступная ссылка)
  • International Atomic Energy Agency - Nuclear Fuel Cycle and Waste Technology Program (недоступная ссылка)
  • (недоступная ссылка)
  • Nuclear Regulatory Commission - Spent Fuel Heat Generation Calculation (недоступная ссылка)

Захоронение радиоактивных отходов, необходимо для предотвращения влияния вредных химических элементов и радиоактивных изотопов на окружающую среду, экологию, а, главное, на здоровье человека.

Ежегодно уровень образования увеличивается, а утилизация и переработка по-прежнему не захватывает всё количество поступающих отходов. Рециркуляция и переработка для вторичного использования происходят слишком медленно, в то время как утилизация радиоактивных отходов требует более активных действий.

Источники загрязнения радиоактивными отходами окружающей среды

Источником радиоактивных или может быть любое предприятие, использующее или обрабатывающее радиоактивные изотопы. Также это могут быть организации производящие материалы ЕВРМ, производство которых дает радиоактивные отходы. Это промышленность ядерного или медицинского сектора, использующие или генерирующие радиационные материалы для изготовления своей продукции.

Такие отходы могут образовываться в разных формах, а, главное, принимать разные физические и химические характеристики. Такие как концентрация и период полураспада основного элемента, составляющего радионуклиды. Они могут образовываться:

  • При переработке сцинтилляционных счетчиков, раствор, которого переходит в жидкую форму.
  • При переработке использованного топлива.
  • Во время работы вентиляционных систем также могут происходить выбросы радиоактивных материалов в газ подобных формах, на различных предприятиях,имеющих, дело с подобными веществами.
  • Медицинские принадлежности, расходные материалы, лабораторная посуда, радиофармацевтических организаций, стеклотара, использованная при работе с топливом для АЭС все это также можно считать источником заражения.
  • Природные источники радиации, известные как ПИР также могут излучать радиоактивное заражение. Основная часть подобных веществ это нуклиды (бета-излучатели), калий – 40, рубидий – 87, торий – 232, а также уран – 238 и их продукты распада, испускающие альфа-частицы.

Санэпиднадзор выпустил список регламент санитарных правил, для работы с подобными веществами.

Небольшая часть радионуклидов содержится даже в обычном угле, но она настолько мало что даже средняя концентрация в земной поверхности таких элементов превышает их долю. А вот угольная зола по радиоактивности уже равна черному глинистому сланцу, так как радионуклиды не горят. Во время использования угля в топках лишь освобождаются радиоактивные элементы и с зольной пылью попадают в атмосферу. Далее, с воздухом человек ежегодно вдыхает ядовитые химические элементы, попавшие туда во время работы каких-либо электростанций, использующих уголь. Совокупность таких выбросов, в России, равна примерно 1000 тонн урана.

Отработанные элементы газовой и нефтяной продукции также могут содержать такой элемент, как радий, распад такого продукта может зависеть от сульфатных отложений в нефтяных скважинах. А также радон, который может быть составляющим воды, газа или нефти. Распад радона образовывает твердые радиоизотопы, как правило, на стенках трубопровода он образовывается осадком.

Участки производства пропана, на нефтеперерабатывающих предприятиях считают самыми опасными радиоактивными зонами, поскольку радон и пропан имеют одинаковый уровень температуры кипения. Испарения, попадая в воздух осадком, опускаются на землю и заражают все территорию.

Утилизация радиоактивных отходов такого вида практически невозможна, так как микроскопические частицы присутствуют в воздухе всех городах страны.

Медицинские РАО также обладают источниками бета и гамма лучей, их разделяют на два класса. Ядерная диагностическая медицина использует короткоживущий гамма излучатель (технеций – 99-м). Его большая часть распадается за довольно короткий промежуток времени, после чего он не имеет никакого влияния на окружающую среду и утилизируется с обычным мусором.

Классификация радиоактивных отходов и их элементов

Существует три группы, на которые делят радиоактивные отходы, это:

  • низко активные;
  • средне активные;
  • высоко активные.

Первые также делят еще и на четыре класса:

  • GТСС.

Последний, из которых самый опасный.

Также существует класс трансурановых РАО, к нему относят альфа-отходы, излучающие трансурановые радионуклиды, у которых период полураспада превышает 20 лет. А концентрация более 100 нКи/г. В связи с тем, что период распада у них намного больше, чем у обычных урановых отходов, захоронение производится более тщательно.

Методы захоронения или утилизации радиоактивных отходов

Даже для безопасной перевозки и хранения такие отходы необходимо обработать и кондиционировать, для их дальнейшей трансформации в более подходящие формы. Защита человека и природной среды, самые актуальные вопросы. Захоронение радиоактивных отходов, не должно приносить какой-либо урон экологии и фауне в целом.

Существует несколько видов борьбы с ядерными веществами, выбор которого завит от уровня опасности последнего.

Остекловывание.

Высокий уровень активности (HLW) вынуждает применять остекловывание как метод захоронения, для того, чтобы придать веществу твердую форму, которая останется в таком устойчивом виде на тысячи лет. При захоронении радиоактивных отходов в России, используют боросиликатное стекло, его стабильная форма, позволит сохранить любой элемент внутри такой матрицы на многие тысячелетия.

Сжигание.

Утилизация радиоактивных отходов с использованием данной технологии полной быть не может. Ее используют, как правило, для частичного уменьшения объема материалов несущих в себе угрозу экологии. При таком методе появляется беспокойство за атмосферу, ведь несгоревшие частицы нуклидов попадают в воздух. Но, тем не менее ее используют для уничтожения таких видов зараженных материалов, как:

  • дерево;
  • макулатура;
  • одежда;
  • резина;

Выбросы в атмосферу не превышают установленных норм, так как подобные печи спроектированы и разработаны по самым высоким меркам, современного технологического процесса.

Уплотнение.

Это довольно известная и надежная технология, позволяющая уменьшить объем (применяется для переработки ТБО и других крупногабаритных изделий) отходов низкого уровня опасности. Диапазон установок для прессов подобных действий достаточно велик и может колебаться от 5 т. до 1000 т. (суперуплотнитель). Коэффициент уплотнения в таком случае может быть равен 10 и выше, в зависимости от обрабатываемого материала. В подобной технологии используют гидравлические или пневматические пресса с низкой силой давления.

Цементирование.

Цементирование могильников радиоактивных отходов в России один из самых распространённых видов иммобилизации радиоактивных веществ. Используется специальный жидкий раствор, в состав которого входит множество химических элементов, на их прочность практически не влияют природные условия, а значит, срок их эксплуатации почти неограничен.

Технология здесь заключается в том, чтобы поместить зараженный предмет или радиационные элементы в контейнер, затем залить его заранее приготовленным раствором, дать время застыть и переместить храниться на закрытую территорию.

Эта технология подходит для отходов среднего уровня опасности.

Давно бытует мнение, что в скором времени захоронение радиоактивных отходов можно будет производить на Солнце, как сообщают СМИ, в России уже разрабатывают такой проект. Но пока это лишь в планах, нужно заботиться об окружающей среде и экологии родного края.

Радиоактивные отходы (РАО) – это те вещества, которые содержат радиоактивные элементы и в дальнейшем не могут использоваться вторично, так как не имеют практической ценности. Они образуются при добыче и переработке радиоактивной руды, при работе оборудования, выделяющего тепло, при утилизации ядерных отходов.

Виды и классификация радиоактивных отходов

По видам РАО разделяют:

  • по состоянию – твердые, газообразные, жидкие;
  • по удельной активности – высокоактивные, средней активности, низко активные, очень низкой активности
  • по типам – удаляемые и особые;
  • по сроку полураспада радионуклидов – долго- и короткоживущие;
  • по элементам ядерного типа – с их наличием, с отсутствием;
  • по добыче – при переработке урановых руд, при добыче минерального сырья.

Данная классификация актуальна и для России, и приняты на международном уровне. В целом разделение на классы не является окончательным, оно требует согласования с различными национальными системами.

Освобожденные от контроля

Существуют виды радиоактивных отходов, в которых совсем низкая концентрация радионуклидов. Они практически не несут опасности для окружающей среды. Такие вещества относятся к освобожденной категории. Ежегодное количество облучения от них не превышает уровня 10 мк3в.

Правила обращения с РАО

Радиоактивные вещества разделяются на классы не только для определения уровня опасности, но и для разработки правил обращения с ними:

  • необходимо обеспечить защиту человека, который работает с РАО;
  • следует повышать защиту окружающей среды от опасных веществ;
  • контролировать процесс обезвреживания отходов;
  • указывать уровень облучения на каждом могильнике на основе документов;
  • контролировать накопление и использование радиоактивных элементов;
  • в случае опасности нужно предотвращать аварии;
  • в чрезвычайных случаях необходимо устранять все последствия.

В чем опасность РАО

Чтобы предотвратить такой исход, все предприятия, использующие радиоактивные элементы, обязуются применять системы фильтрации, контролировать деятельность производства, обеззараживать и утилизировать отходы. Это помогает предотвратить экологическую катастрофу.

Уровень опасности РАО зависит от нескольких факторов. Прежде всего, это количество отходов в атмосфере, мощность радиации, площадь зараженной территории, количество людей, которые на ней обитают. Поскольку эти вещества смертельно опасные, нужно в случае аварии ликвидировать катастрофу и эвакуировать население с территории. Также важно предотвратить и остановить перемещение РАО на другие территории.

Правила хранения и перевозки

Предприятие, работающее с радиоактивными веществами, должно обеспечить надежное хранение отходов. Оно предполагает сбор РАО, их передачу на захоронение. Необходимые для хранения средства и способы устанавливаются документами. Для них изготавливают специальные контейнеры из резины, бумаги и пластмассы. Также они сберегаются в холодильниках, металлических барабанах. Перевозка РАО осуществляется в специальных герметичных емкостях. В транспорте они должны надежно фиксироваться. Транспортировку могут осуществлять только те компании, которые имеют на это специальную лицензию.

Переработка

Выбор методов переработки зависит от особенностей отходов. Некоторые виды мусора измельчают и прессуют, чтобы оптимизировать объем отходов. Определенные остатки принято сжигать в печи. Переработка РАО должна соответствовать следующим требованиям:

  • изоляция веществ от воды и других продуктов;
  • устранить облучение;
  • изолировать влияние на сырье и полезные ископаемые;
  • оценить целесообразность переработки.

Сбор и удаление

Сбор и удаление РАО должен производиться в местах, где отсутствуют не радиоактивные элементы. При этом нужно учитывать агрегатное состояние, категорию отходов, их свойства, материалы, время полураспада радионуклидов, потенциальную угрозу вещества. В связи с этим нужно разработать стратегию обращения с РАО.

Для сбора и удаления нужно применять специализированное оборудование. Специалисты утверждают, что данные операции возможны только средне и низко активными веществами. Во время процесса каждый этап должен контролироваться, чтобы предотвратить экологическую катастрофу. Даже маленькая ошибка способна привести к аварии, загрязнению окружающей среды и гибели огромного количества людей. На устранение влияния радиоактивных веществ и восстановление природы понадобится много десятилетий.

Любое производство оставляет после себя отходы. И сферы, использующие свойства радиоактивности, не исключение. Свободное обращение ядерных отходов, как правило, недопустимо уже на законодательном уровне. Соответственно, их необходимо изолировать и сохранять, учитывая особенности отдельных элементов.

Знак, являющийся предупреждением об опасности ионизирующего излучения РАО (радиоактивных отходов)

Радиоактивные отходы (РАО) – это вещества, которые имеют в своем составе элементы, обладающие радиоактивностью. Такие отходы не имеют практической значимости, то есть они непригодны для вторичного применения.

Обратите внимание! Довольно часто используется синонимичное понятие – .

От термина «радиоактивные отходы» стоит различать понятие «отработавшее ядерное топливо – ОЯТ». Отличие ОЯТ от РАО состоит в том, что отработки ядерного топлива после должной переработки могут использоваться повторно в виде свежих материалов для ядерных реакторов.

Дополнительная информация: ОЯТ представляют собой совокупность тепловыделяющих элементов, в основном состоящих из остатков топлива ядерных установок и большого количества продуктов полураспада, как правило, ими являются изотопы 137 Cs и 90 Sr. Их активно используют в работе научных и медицинских учреждений, а также на промышленных и сельскохозяйственных предприятиях.

В нашей стране существует лишь одна организация, которая вправе проводить мероприятия по окончательному захоронению РАО. Это Национальный оператор по обращению с радиоактивными отходами (ФГУП «НО РАО»).

Действия данной организации регламентируются Законодательством РФ (№190 ФЗ от 11.07.2011). Закон предписывает обязательное захоронение радиоактивных отходов, произведённых на территории России, а также запрещает их ввоз из-за рубежа.

Классификация

Классификация рассматриваемого вида отходов включает несколько классов РАО и состоит из:

  • низкоактивных (их можно поделить на классы: A, B, C и GTCC (самый опасный));
  • среднеактивных (в Соединённых Штатах этот вид РАО не выделяется в отдельный класс, так что понятием пользуются обычно в Европейских странах);
  • высокоактивных РАО.

Иногда обособляют ещё один класс РАО: трансурановый. К данному классу принадлежат отходы, характеризующиеся содержанием трансурановых α-излучающих радионуклидов с большими периодами распада и крайне высокими значениями их концентраций. По причине продолжительного периода полураспада этих отходов, погребение происходит гораздо более основательно, нежели изоляция малоактивных и среднеактивных РАО. Предсказать, насколько опасными для экологической обстановки и человеческого организма будут являться данные вещества, крайне проблематично.

Проблема обращения с радиоактивными отходами

Во время функционирования первых предприятий, использующих радиоактивные соединения, было принято считать, что рассеяние некоторого количества РАО на участках окружающей среды допустимо, в отличие от отходов, образующихся в остальных производственных отраслях.

Так, на печально известном предприятии «Маяк» на начальном этапе осуществления деятельности все РАО выводились в ближайшие водные источники. Таким образом, произошло серьезнейшее загрязнение реки Теча и расположенного на ней ряда водоёмов.

Впоследствии выяснилось, что в различных областях биосферы происходит накопление и концентрирование опасных РАО и поэтому простой сброс их в окружающую среду недопустим. Вместе с зараженной пищей радиоактивные элементы поступают в организм человека, что приводит к значительному повышению риска облучения. Поэтому в последние годы активно разрабатываются различные методы сбора, транспортировки и хранения РАО.

Утилизация и переработка

Утилизация радиоактивных отходов может происходить по-разному. Это зависит от класса РАО, к которому они принадлежат. Наиболее примитивной считается утилизация низкоактивных и среднеактивных РАО. Отметим также, что по строению радиоактивные отходы подразделяются на короткоживущие вещества с непродолжительным периодом полураспада и на отходы с долговременным периодом полураспада. Последние относятся к классу долгоживущих.

Для короткоживущих отходов наиболее простым способом утилизации считается их непродолжительное хранение на специально предназначенных площадках в герметичных контейнерах. В течение определённого времени происходит обезвреживание РАО, после чего радиоактивно безвредные отходы могут быть подвержены переработке подобно тому, как перерабатывается бытовой мусор. К таким отходам могут относиться, например, материалы лечебно-профилактических учреждений (ЛПУ). Контейнером для непродолжительного хранения может выступать стандартная двухсотлитровая бочка, изготовленная из металла. Чтобы избежать проникновения радиоактивных элементов из емкости в среду, отходы обычно заливаются битумной или цементной смесью.

На фото обозначены технологии обращения с РАО на одном из современных предприятий России

Утилизация отходов, постоянно образующихся на атомных электростанциях, значительно сложнее в осуществлении и требует применения особых методов, таких как, например, плазменная переработка, недавно реализованная на Нововоронежской АЭС. В этом случае РАО подвергают превращению в вещества, подобные стеклу, которые впоследствии помещаются в контейнеры с целью безвозвратного захоронения.

Такая переработка абсолютно безопасна и позволяет в несколько раз сократить количество РАО. Способствует этому многоступенчатая очистка продуктов сжигания. Процесс может протекать в автономном режиме на протяжении 720 часов, с продуктивностью до 250 кг отходов в час. Температурный показатель в печной установке при этом достигает 1800 0 С. Считается, что такой новый комплекс проработает ещё в течение 30 лет.

Преимущества плазменного процесса утилизации РАО перед прочими, как говорится, налицо. Так, нет необходимости осуществлять тщательную сортировку отходов. Кроме того, многочисленные методы очистки позволяют сократить выделение газообразных примесей в атмосферу.

Радиоактивное загрязнение, могильники радиоактивных отходов в России

В течение многих лет предприятие «Маяк», расположенное в северо-восточной части России, являлось ядерной электростанцией, но в 1957 году там случилась одна из самых катастрофичных ядерных аварий. В результате инцидента в природную среду выделилось до 100 тонн опасных РАО, поразивших огромные по площади территории. При этом катастрофа вплоть до 1980 годов тщательно скрывалась. В продолжение большого количества лет, в реку Карачай производили сбрасывание отходов со станции и с загрязненной окружающей области. Это стало причиной загрязнения водного источника, столь необходимого для тысяч людей.

«Маяк» далеко не единственное место в нашей стране, подверженное радиоактивному загрязнению. Одним из основных экологически опасных объектов в Нижегородской области является участок захоронения радиоактивных отходов, расположенный в 17 километрах от города Семёнов, широко известный также как Семёновский могильник.

В Сибири располагается хранилище, в котором ядерные отходы размещаются уже больше 40 лет. Для хранения радиоактивных материалов там применяют незакрытые бассейны и контейнеры, в которых уже содержится примерно 125 тысяч тонн отходов.

В России вообще обнаружено огромное количество территорий с превышающим допустимые нормы уровнем радиации. В их число входят даже такие крупные города, как Санкт-Петербург, Москва, Калининград и др. Например, в детском саду вблизи института им. Курчатова в нашей столице была выявлена песочница для детей с уровнем радиации в 612 тыс. мР/час. Если бы человек находился на этом «безопасном» детском объекте в течение 1 суток, то он был бы облучен смертельной дозой радиации.

Во время существования СССР, особенно в середине прошлого столетия, опаснейшие радиоактивные отходы могли сваливать в ближайшие овраги, так что образовывалась целая свалка. А с разрастанием городов, в этих зараженных местах строились новые спальные и производственные кварталы.

Оценить, какова судьба радиоактивных отходов в биосфере довольно проблематично. Дожди и ветры активно распространяют загрязнения по всем окружающим территориям. Так, за последние годы значительно возросла скорость, с которой происходит загрязнение Белого моря в результате захоронения РАО.

Проблемы захоронения

В осуществлении процессов хранения и захоронения ядерных отходов сегодня существуют два подхода: локальный и региональный. Захоронение РАО на месте их производства с разных точек зрения очень удобно, однако, такой подход может приводить к росту числа опасных участков захоронения при постройке новых сооружений. С другой стороны, если количество этих мест будет строго ограничено, то возникнет проблема себестоимости и обеспечения безопасных транспортировок отходов. Ведь вне зависимости от того является ли перевозка радиоактивных отходов процессом производства, стоит исключить несуществующие критерии опасности. Бескомпромиссный выбор в этом вопросе сделать довольно сложно, если вообще возможно. В разных государствах такой вопрос решают по-разному и, единого мнения пока не существует.

Одной из главных проблем можно считать определение геологических формаций, пригодных для того, чтобы организовать кладбище радиоактивных отходов. Лучше всего для этой цели подходят глубокие штольни и шахты, использовавшиеся для добычи каменной соли. А также часто приспосабливают скважины на территориях, богатых глиняными и скальными породами. Высокая водонепроницаемость, так или иначе, одна из самых важных характеристик при выборе места захоронения. Своеобразный могильник радиоактивных отходов появляется в местах подземных ядерных взрывов. Так, в штате Невада, США, на участке, послужившем полигоном примерно для 450 взрывов, практически каждый из таких взрывов образовал хранилище высокоактивных ядерных отходов, погребённых в горной породе без каких-либо технических «препятствий».

Таким образом, проблема образования радиоактивных отходов крайне трудна и неоднозначна. Достижения в ядерной энергетике, конечно, приносят человечеству колоссальную выгоду, но при этом и создают множество неприятностей. И одной из главных и нерешенных на сегодняшний день проблем, является проблема захоронения радиоактивных отходов.

Более подробно об истории вопроса, а также о современном взгляде на проблематику ядерных отходов, можно увидеть в специальном выпуске программы «Ядерное наследие» телеканала «Наука 2.0».