როგორ მოვძებნოთ პირველი არითმეტიკული პროგრესია. არითმეტიკული პროგრესია

არითმეტიკული პროგრესიის ჯამი.

არითმეტიკული პროგრესიის ჯამი მარტივი რამ არის. მნიშვნელობითაც და ფორმულითაც. მაგრამ ამ თემაზე ყველანაირი დავალებაა. ელემენტარულიდან საკმაოდ მყარი.

ჯერ შევეხოთ ჯამის მნიშვნელობას და ფორმულას. და მერე გადავწყვეტთ. საკუთარი სიამოვნებისთვის.) ჯამის მნიშვნელობა დაბლავით მარტივია. არითმეტიკული პროგრესიის ჯამის საპოვნელად, თქვენ უბრალოდ უნდა ყურადღებით დაამატოთ მისი ყველა წევრი. თუ ეს ტერმინები ცოტაა, შეგიძლიათ დაამატოთ ყოველგვარი ფორმულების გარეშე. მაგრამ თუ ბევრია, ან ბევრი... დამატება შემაწუხებელია.) ამ შემთხვევაში ფორმულა ზოგავს.

ჯამის ფორმულა მარტივია:

მოდით გავარკვიოთ, რა სახის ასოები შედის ფორმულაში. ეს ბევრ რამეს გაარკვევს.

S n არის არითმეტიკული პროგრესიის ჯამი. დამატების შედეგი ყველაწევრებთან ერთად პირველი on ბოლო.Ეს არის მნიშვნელოვანი. დაამატე ზუსტად ყველაწევრები ზედიზედ, ხარვეზებისა და ნახტომების გარეშე. და, ზუსტად, დაწყებული პირველი.ისეთ პრობლემებში, როგორიცაა მესამე და მერვე წევრთა ჯამის პოვნა, ან ხუთიდან მეოცემდე ტერმინების ჯამი, ფორმულის პირდაპირი გამოყენება იმედგაცრუებული იქნება.)

a 1 - პირველიპროგრესის წევრი. აქ ყველაფერი გასაგებია, მარტივია პირველირიგის ნომერი.

a n- ბოლოპროგრესის წევრი. რიგის ბოლო ნომერი. არ არის ძალიან ნაცნობი სახელი, მაგრამ, როდესაც გამოიყენება თანხა, ეს ძალიან შესაფერისია. მერე თავად ნახავ.

არის ბოლო წევრის ნომერი. მნიშვნელოვანია გვესმოდეს, რომ ფორმულაში ეს რიცხვი ემთხვევა დამატებული წევრების რაოდენობას.

მოდით განვსაზღვროთ კონცეფცია ბოლოწევრი a n. შევსების კითხვა: როგორი წევრი იქნება ბოლო,თუ მიცემულია გაუთავებელიარითმეტიკული პროგრესია?

დარწმუნებული პასუხისთვის, თქვენ უნდა გესმოდეთ არითმეტიკული პროგრესიის ელემენტარული მნიშვნელობა და ... ყურადღებით წაიკითხეთ დავალება!)

არითმეტიკული პროგრესიის ჯამის პოვნის ამოცანაში ყოველთვის ჩნდება ბოლო წევრი (პირდაპირ ან ირიბად), რომელიც შეზღუდული უნდა იყოს.წინააღმდეგ შემთხვევაში, სასრული, კონკრეტული თანხა უბრალოდ არ არსებობს.ამოხსნისთვის არ აქვს მნიშვნელობა რა სახის პროგრესიაა მოცემული: სასრული თუ უსასრულო. არ აქვს მნიშვნელობა როგორ არის მოცემული: რიცხვების რიგით თუ n-ე წევრის ფორმულით.

ყველაზე მნიშვნელოვანი ის არის, რომ გვესმოდეს, რომ ფორმულა მუშაობს პროგრესირების პირველი ტერმინიდან რიცხვით ტერმინამდე ნ.სინამდვილეში, ფორმულის სრული სახელი ასე გამოიყურება: არითმეტიკული პროგრესიის პირველი n წევრის ჯამი.ამ პირველივე წევრების რიცხვი, ე.ი. , განისაზღვრება მხოლოდ ამოცანის მიხედვით. ამოცანაში, მთელი ეს ღირებული ინფორმაცია ხშირად დაშიფრულია, დიახ... მაგრამ არაფერი, ქვემოთ მოცემულ მაგალითებში ჩვენ ამ საიდუმლოებებს გამოვავლენთ.)

არითმეტიკული პროგრესიის ჯამის ამოცანების მაგალითები.

პირველ რიგში, სასარგებლო ინფორმაცია:

არითმეტიკული პროგრესიის ჯამისთვის ამოცანების მთავარი სირთულე არის ფორმულის ელემენტების სწორი განსაზღვრა.

დავალებების ავტორები სწორედ ამ ელემენტებს შიფრავენ უსაზღვრო ფანტაზიით.) აქ მთავარია არ შეგეშინდეთ. ელემენტების არსის გაგება, საკმარისია მხოლოდ მათი გაშიფვრა. მოდით შევხედოთ რამდენიმე მაგალითს დეტალურად. დავიწყოთ დავალებით, რომელიც დაფუძნებულია რეალურ GIA-ზე.

1. არითმეტიკული პროგრესიამოცემული პირობით: a n = 2n-3.5. იპოვეთ პირველი 10 წევრის ჯამი.

Ყოჩაღ. მარტივია.) ფორმულის მიხედვით ოდენობის დასადგენად რა უნდა ვიცოდეთ? პირველი წევრი a 1, ბოლო სემესტრი a nდიახ, ბოლო პერიოდის ნომერი ნ.

სად მივიღოთ ბოლო წევრის ნომერი ? დიახ, იმავე ადგილას, მდგომარეობაში! ნათქვამია იპოვე თანხა პირველი 10 წევრი.აბა, რა რიცხვი იქნება ბოლო,მეათე წევრი?) არ დაიჯერებთ, მისი ნომერი მეათეა!) ამიტომ ნაცვლად a nჩავანაცვლებთ ფორმულაში ა 10, მაგრამ სამაგიეროდ -ათი. ისევ და ისევ, ბოლო წევრის რაოდენობა იგივეა, რაც წევრების რაოდენობა.

რჩება გასარკვევი a 1და ა 10. ეს ადვილად გამოითვლება n-ე წევრის ფორმულით, რომელიც მოცემულია პრობლემის დებულებაში. არ იცით როგორ გააკეთოთ ეს? ეწვიეთ წინა გაკვეთილს, ამის გარეშე - არაფერი.

a 1= 2 1 - 3.5 = -1.5

ა 10\u003d 2 10 - 3.5 \u003d 16.5

S n = S 10.

ჩვენ გავარკვიეთ არითმეტიკული პროგრესიის ჯამის ფორმულის ყველა ელემენტის მნიშვნელობა. რჩება მათი ჩანაცვლება და დათვლა:

სულ ეს არის. პასუხი: 75.

კიდევ ერთი დავალება, რომელიც ეფუძნება GIA-ს. ცოტა უფრო რთული:

2. მოცემულია არითმეტიკული პროგრესია (a n), რომლის სხვაობა არის 3,7; a 1 \u003d 2.3. იპოვეთ პირველი 15 წევრის ჯამი.

ჩვენ დაუყოვნებლივ ვწერთ ჯამის ფორმულას:

ეს ფორმულა საშუალებას გვაძლევს ვიპოვოთ ნებისმიერი წევრის მნიშვნელობა მისი რიცხვით. ჩვენ ვეძებთ მარტივ ჩანაცვლებას:

a 15 \u003d 2.3 + (15-1) 3.7 \u003d 54.1

რჩება ფორმულის ყველა ელემენტის ჩანაცვლება არითმეტიკული პროგრესიის ჯამისთვის და პასუხის გამოთვლა:

პასუხი: 423.

სხვათა შორის, თუ ჯამის ფორმულაში ნაცვლად a nუბრალოდ ჩაანაცვლეთ n-ე წევრის ფორმულა, მივიღებთ:

ჩვენ ვაძლევთ მსგავსებს, ვიღებთ ახალ ფორმულას არითმეტიკული პროგრესიის წევრების ჯამისთვის:

როგორც ხედავთ, არ არის საჭირო მე-2 ტერმინი a n. ზოგიერთ დავალებაში ეს ფორმულა ძალიან გვეხმარება, დიახ... შეგიძლიათ დაიმახსოვროთ ეს ფორმულა. და თქვენ შეგიძლიათ უბრალოდ ამოიღოთ ის საჭირო დროს, როგორც აქ. ყოველივე ამის შემდეგ, ჯამის ფორმულა და n-ე ტერმინის ფორმულა ყველანაირად უნდა ახსოვდეს.)

ახლა დავალება მოკლე დაშიფვრის სახით):

3. იპოვნეთ ყველა დადებითი ორნიშნა რიცხვის ჯამი, რომლებიც სამის ჯერადია.

Როგორ! არც პირველი წევრი, არც უკანასკნელი, არც პროგრესი... როგორ ვიცხოვროთ!?

მოგიწევთ თავით იფიქროთ და მდგომარეობიდან ამოიღოთ არითმეტიკული პროგრესიის ჯამის ყველა ელემენტი. რა არის ორნიშნა რიცხვები - ვიცით. ისინი შედგება ორი რიცხვისაგან.) რა ორნიშნა რიცხვი იქნება პირველი? 10, სავარაუდოდ.) ბოლო რამორნიშნა ნომერი? 99, რა თქმა უნდა! მას სამნიშნა რიცხვები მოჰყვება...

სამის ნამრავლები... ჰმ... ეს ის რიცხვებია, რომლებიც თანაბრად იყოფა სამზე, აი! ათი არ იყოფა სამზე, 11 არ იყოფა... 12... იყოფა! ასე რომ, რაღაც ჩნდება. თქვენ უკვე შეგიძლიათ დაწეროთ სერიები პრობლემის მდგომარეობის მიხედვით:

12, 15, 18, 21, ... 96, 99.

იქნება ეს სერია არითმეტიკული პროგრესია? Რა თქმა უნდა! თითოეული ტერმინი წინასგან მკაცრად განსხვავდება სამით. თუ ტერმინს ემატება 2, ან 4, ვთქვათ, შედეგი, ე.ი. ახალი რიცხვი აღარ გაიყოფა 3-ზე. თქვენ შეგიძლიათ დაუყოვნებლივ განსაზღვროთ არითმეტიკული პროგრესიის სხვაობა გროვამდე: d = 3.სასარგებლო!)

ასე რომ, ჩვენ შეგვიძლია უსაფრთხოდ ჩავწეროთ პროგრესირების რამდენიმე პარამეტრი:

რა რიცხვი იქნება ბოლო წევრი? ვინც ფიქრობს, რომ 99 სასიკვდილოდ ცდება... ნომრები - ისინი ყოველთვის მიდიან ზედიზედ და ჩვენი წევრები ხტებიან სამეულს. ისინი არ ემთხვევა.

აქ ორი გამოსავალია. ერთი გზა არის სუპერ შრომისმოყვარეებისთვის. შეგიძლიათ დახატოთ პროგრესია, რიცხვების მთელი რიგი და თითით დათვალოთ ტერმინების რაოდენობა.) მეორე გზა არის მოაზროვნეებისთვის. თქვენ უნდა გახსოვდეთ ფორმულა n-ე ტერმინისთვის. თუ ფორმულა გამოიყენება ჩვენს პრობლემაზე, მივიღებთ, რომ 99 არის პროგრესიის ოცდამეათე წევრი. იმათ. n = 30.

ჩვენ ვუყურებთ არითმეტიკული პროგრესიის ჯამის ფორმულას:

ვუყურებთ და ვხარობთ.) პრობლემის მდგომარეობიდან ამოვიღეთ ყველაფერი, რაც საჭიროა თანხის გამოსათვლელად:

a 1= 12.

30= 99.

S n = S 30.

რჩება ელემენტარული არითმეტიკა. ჩაანაცვლეთ რიცხვები ფორმულაში და გამოთვალეთ:

პასუხი: 1665 წ

სხვა ტიპის პოპულარული თავსატეხები:

4. არითმეტიკული პროგრესია მოცემულია:

-21,5; -20; -18,5; -17; ...

იპოვეთ წევრთა ჯამი მეოცედან ოცდამეოთხემდე.

ვუყურებთ ჯამის ფორმულას და ... ვნერვიულობთ.) ფორმულა, შეგახსენებთ, ითვლის ჯამს. პირველიდანწევრი. და პრობლემაში თქვენ უნდა გამოთვალოთ ჯამი მეოცე წლიდან...ფორმულა არ იმუშავებს.

თქვენ, რა თქმა უნდა, შეგიძლიათ დახატოთ მთელი პროგრესი ზედიზედ და დააყენოთ წევრები 20-დან 34-მდე. მაგრამ ... რატომღაც ეს სულელურად და დიდი ხნის განმავლობაში გამოდის, არა?)

არსებობს უფრო ელეგანტური გადაწყვეტა. მოდით დავყოთ ჩვენი სერია ორ ნაწილად. პირველი ნაწილი იქნება პირველი ტერმინიდან მეცხრამეტემდე.Მეორე ნაწილი - ოცდათოთხმეტი.გასაგებია, რომ თუ გამოვთვლით პირველი ნაწილის წევრთა ჯამს S 1-19, დავუმატოთ მეორე ნაწილის წევრთა ჯამს S 20-34, ვიღებთ პროგრესიის ჯამს პირველი წევრიდან ოცდამეოთხემდე S 1-34. Ამგვარად:

S 1-19 + S 20-34 = S 1-34

ეს გვიჩვენებს, რომ იპოვონ თანხა S 20-34შეიძლება გაკეთდეს მარტივი გამოკლებით

S 20-34 = S 1-34 - S 1-19

განიხილება ორივე ჯამი მარჯვენა მხარეს პირველიდანწევრი, ე.ი. სტანდარტული ჯამის ფორმულა საკმაოდ გამოიყენება მათთვის. ვიწყებთ?

ჩვენ გამოვყოფთ პროგრესირების პარამეტრებს დავალების მდგომარეობიდან:

d = 1.5.

a 1= -21,5.

პირველი 19 და პირველი 34 წევრის ჯამების გამოსათვლელად დაგვჭირდება მე-19 და 34 წევრი. ჩვენ მათ ვითვლით n-ე წევრის ფორმულის მიხედვით, როგორც ამოცანა 2-ში:

19\u003d -21.5 + (19-1) 1.5 \u003d 5.5

a 34\u003d -21.5 + (34-1) 1.5 \u003d 28

აღარაფერი დარჩა. გამოვაკლოთ 19 წევრის ჯამი 34 წევრის ჯამს:

S 20-34 = S 1-34 - S 1-19 = 110.5 - (-152) = 262.5

პასუხი: 262.5

ერთი მნიშვნელოვანი შენიშვნა! ამ პრობლემის გადაჭრაში არის ძალიან სასარგებლო ფუნქცია. პირდაპირი გაანგარიშების ნაცვლად რაც გჭირდებათ (S 20-34),ჩვენ დავთვალეთ რაც, როგორც ჩანს, არ არის საჭირო - S 1-19.და მერე გადაწყვიტეს S 20-34სრული შედეგიდან არასაჭიროს უგულებელყოფა. ასეთი "ყურებით გამონათქვამი" ხშირად ზოგავს ბოროტ თავსატეხებში.)

ამ გაკვეთილზე განვიხილეთ პრობლემები, რომლებისთვისაც საკმარისია არითმეტიკული პროგრესიის ჯამის მნიშვნელობის გაგება. კარგად, თქვენ უნდა იცოდეთ რამდენიმე ფორმულა.)

პრაქტიკული რჩევა:

არითმეტიკული პროგრესიის ჯამისთვის რაიმე ამოცანის გადაჭრისას, გირჩევთ დაუყოვნებლივ ამოწეროთ ორი ძირითადი ფორმულა ამ თემიდან.

მე-n ტერმინის ფორმულა:

ეს ფორმულები დაუყოვნებლივ გეტყვით, რა უნდა მოძებნოთ, რა მიმართულებით იფიქროთ პრობლემის გადასაჭრელად. ეხმარება.

ახლა კი ამოცანები დამოუკიდებელი გადაწყვეტისთვის.

5. იპოვეთ ყველა ორნიშნა რიცხვის ჯამი, რომელიც არ იყოფა სამზე.

მაგარია?) მინიშნება დამალულია 4 პრობლემის შენიშვნაში. კარგი, პრობლემა 3 დაგეხმარებათ.

6. არითმეტიკული პროგრესია მოცემულია პირობით: a 1 =-5.5; a n+1 = a n +0.5. იპოვეთ პირველი 24 წევრის ჯამი.

არაჩვეულებრივი?) ეს განმეორებადი ფორმულაა. ამის შესახებ შეგიძლიათ წაიკითხოთ წინა გაკვეთილზე. ნუ უგულებელყოფთ ბმულს, ასეთი თავსატეხები ხშირად გვხვდება GIA-ში.

7. ვასიამ დაზოგა ფული დღესასწაულისთვის. 4550 რუბლს შეადგენს! მე კი გადავწყვიტე, რომ ყველაზე საყვარელ ადამიანს (საკუთარ თავს) ბედნიერების რამდენიმე დღე მივცე). იცხოვრე ლამაზად, საკუთარი თავის არაფრის უარყოფის გარეშე. დახარჯეთ 500 მანეთი პირველ დღეს და დახარჯეთ 50 მანეთი მეტი ყოველი მომდევნო დღეს, ვიდრე წინა დღეს! სანამ ფული არ ამოიწურება. რამდენი დღე ჰქონდა ვასიას ბედნიერებას?

რთულია?) მე-2 დავალების დამატებითი ფორმულა დაგეხმარებათ.

პასუხები (არეულად): 7, 3240, 6.

თუ მოგწონთ ეს საიტი...

სხვათა შორის, მე მაქვს კიდევ რამდენიმე საინტერესო საიტი თქვენთვის.)

შეგიძლიათ ივარჯიშოთ მაგალითების ამოხსნაში და გაიგოთ თქვენი დონე. ტესტირება მყისიერი გადამოწმებით. სწავლა - ინტერესით!)

შეგიძლიათ გაეცნოთ ფუნქციებს და წარმოებულებს.

საშუალო სკოლაში (მე-9 კლასი) ალგებრის შესწავლისას ერთ-ერთი მნიშვნელოვანი თემაა რიცხვითი მიმდევრობების შესწავლა, რომელიც მოიცავს პროგრესირებას - გეომეტრიულ და არითმეტიკას. ამ სტატიაში განვიხილავთ არითმეტიკულ პროგრესიას და მაგალითებს ამონახსნებით.

რა არის არითმეტიკული პროგრესია?

ამის გასაგებად აუცილებელია განსახილველი პროგრესიის განმარტება, ასევე ძირითადი ფორმულების მიცემა, რომლებიც შემდგომში იქნება გამოყენებული პრობლემების გადაჭრაში.

ცნობილია, რომ ზოგიერთ ალგებრულ პროგრესიაში 1 წევრი უდრის 6-ს, ხოლო მე-7 წევრი უდრის 18-ს. საჭიროა სხვაობის პოვნა და ამ თანმიმდევრობის აღდგენა მე-7 წევრამდე.

გამოვიყენოთ ფორმულა უცნობი ტერმინის დასადგენად: a n = (n - 1) * d + a 1 . ჩვენ ვცვლით ცნობილ მონაცემებს მდგომარეობიდან მასში, ანუ რიცხვები a 1 და a 7, გვაქვს: 18 \u003d 6 + 6 * d. ამ გამოთქმიდან შეგიძლიათ მარტივად გამოთვალოთ სხვაობა: d = (18 - 6) / 6 = 2. ამრიგად, ამოცანის პირველ ნაწილს გაეცა პასუხი.

მე-7 წევრზე მიმდევრობის აღსადგენად, თქვენ უნდა გამოიყენოთ ალგებრული პროგრესიის განმარტება, ანუ a 2 = a 1 + d, a 3 = a 2 + d და ა.შ. შედეგად, ჩვენ აღვადგენთ მთელ თანმიმდევრობას: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14 , a 6 = 14 + 2 = 16 და 7 = 18.

მაგალითი #3: პროგრესირება

მოდით კიდევ უფრო გავართულოთ პრობლემის მდგომარეობა. ახლა თქვენ უნდა უპასუხოთ კითხვას, თუ როგორ უნდა იპოვოთ არითმეტიკული პროგრესია. შეგვიძლია მოვიყვანოთ შემდეგი მაგალითი: მოცემულია ორი რიცხვი, მაგალითად, 4 და 5. აუცილებელია ალგებრული პროგრესიის გაკეთება ისე, რომ მათ შორის მოთავსდეს კიდევ სამი წევრი.

ამ პრობლემის გადაჭრის დაწყებამდე აუცილებელია იმის გაგება, თუ რა ადგილს დაიკავებენ მოცემული რიცხვები მომავალ პროგრესში. ვინაიდან მათ შორის იქნება კიდევ სამი ტერმინი, შემდეგ 1 \u003d -4 და 5 \u003d 5. ამის დადგენის შემდეგ, ჩვენ ვაგრძელებთ დავალებას, რომელიც მსგავსია წინა. ისევ, მე-n ტერმინისთვის, ვიყენებთ ფორმულას, ვიღებთ: a 5 \u003d a 1 + 4 * d. მდებარეობა: d \u003d (a 5 - a 1) / 4 \u003d (5 - (-4)) / 4 \u003d 2.25. აქ განსხვავება არ არის მთელი რიცხვი, არამედ რაციონალური რიცხვია, ამიტომ ალგებრული პროგრესიის ფორმულები იგივე რჩება.

ახლა დავამატოთ ნაპოვნი განსხვავება 1-ს და აღვადგინოთ პროგრესიის დაკარგული წევრები. ვიღებთ: a 1 = - 4, a 2 = - 4 + 2,25 = - 1,75, a 3 = -1,75 + 2,25 = 0,5, a 4 = 0,5 + 2,25 = 2,75, a 5 \u003d 2,75 + 2,25 \u რაც პრობლემის მდგომარეობას დაემთხვა.

მაგალითი #4: პროგრესიის პირველი წევრი

ჩვენ ვაგრძელებთ არითმეტიკული პროგრესიის მაგალითების მოყვანას ამონახსნით. ყველა წინა ამოცანაში ცნობილი იყო ალგებრული პროგრესიის პირველი რიცხვი. ახლა განიხილეთ სხვა ტიპის პრობლემა: მოდით, ორი რიცხვი იყოს მოცემული, სადაც 15 = 50 და 43 = 37. აუცილებელია გაიგოთ, რომელი რიცხვიდან იწყება ეს თანმიმდევრობა.

აქამდე გამოყენებული ფორმულები გულისხმობს 1 და დ-ის ცოდნას. ამ ციფრების შესახებ პრობლემის პირობებში არაფერია ცნობილი. მიუხედავად ამისა, მოდით დავწეროთ გამონათქვამები თითოეული ტერმინისთვის, რომლის შესახებაც გვაქვს ინფორმაცია: a 15 = a 1 + 14 * d და a 43 = a 1 + 42 * d. მივიღეთ ორი განტოლება, რომელშიც არის 2 უცნობი სიდიდე (a 1 და d). ეს ნიშნავს, რომ პრობლემა მცირდება წრფივი განტოლებათა სისტემის ამოხსნით.

მითითებული სისტემა ყველაზე ადვილად ამოსახსნელია, თუ გამოვხატავთ 1-ს თითოეულ განტოლებაში და შემდეგ შეადარებთ მიღებულ გამონათქვამებს. პირველი განტოლება: a 1 = a 15 - 14 * d = 50 - 14 * d; მეორე განტოლება: a 1 \u003d a 43 - 42 * d \u003d 37 - 42 * d. ამ გამონათქვამების გათანაბრებისას მივიღებთ: 50 - 14 * d \u003d 37 - 42 * d, საიდანაც განსხვავება d \u003d (37 - 50) / (42 - 14) \u003d - 0.464 (მოცემულია მხოლოდ 3 ათობითი ადგილი).

იცის d, შეგიძლიათ გამოიყენოთ ნებისმიერი ზემოთ მოცემული 2 გამოთქმა 1-ისთვის. მაგალითად, პირველი: 1 \u003d 50 - 14 * d \u003d 50 - 14 * (- 0.464) \u003d 56.496.

თუ შედეგზე ეჭვი გეპარებათ, შეგიძლიათ შეამოწმოთ იგი, მაგალითად, განსაზღვროთ პროგრესის 43-ე წევრი, რომელიც მითითებულია პირობაში. ჩვენ ვიღებთ: 43 \u003d a 1 + 42 * d \u003d 56.496 + 42 * (- 0.464) \u003d 37.008. მცირე შეცდომა გამოწვეულია იმით, რომ გამოთვლებში გამოყენებული იყო დამრგვალება მეათასედამდე.

მაგალითი #5: ჯამი

ახლა მოდით გადავხედოთ რამდენიმე მაგალითს არითმეტიკული პროგრესიის ჯამის ამონახსნებით.

მიეცით შემდეგი ფორმის რიცხვითი პროგრესია: 1, 2, 3, 4, ...,. როგორ გამოვთვალოთ ამ რიცხვებიდან 100-ის ჯამი?

კომპიუტერული ტექნოლოგიების განვითარების წყალობით ამ პრობლემის გადაჭრა შესაძლებელია, ანუ თანმიმდევრულად შევკრიბოთ ყველა რიცხვი, რასაც კომპიუტერი გააკეთებს, როგორც კი ადამიანი დააჭერს Enter ღილაკს. თუმცა, პრობლემის მოგვარება შესაძლებელია გონებრივად, თუ ყურადღებას მიაქცევთ, რომ რიცხვების წარმოდგენილი სერია არის ალგებრული პროგრესია, ხოლო განსხვავება არის 1. ჯამის ფორმულის გამოყენებით მივიღებთ: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

საინტერესოა აღინიშნოს, რომ ამ პრობლემას "გაუსური" ეწოდება, რადგან XVIII დასაწყისშისაუკუნის ცნობილმა გერმანელმა, ჯერ კიდევ მხოლოდ 10 წლის ასაკში, გონებაში რამდენიმე წამში ამოხსნა. ბიჭმა არ იცოდა ალგებრული პროგრესიის ჯამის ფორმულა, მაგრამ მან შენიშნა, რომ თუ დაამატებთ რიცხვების წყვილებს, რომლებიც მდებარეობს მიმდევრობის კიდეებზე, ყოველთვის მიიღებთ ერთსა და იმავე შედეგს, ანუ 1 + 100 = 2 + 99. = 3 + 98 = ..., და რადგან ეს ჯამები იქნება ზუსტად 50 (100/2), მაშინ სწორი პასუხის მისაღებად საკმარისია 50 გავამრავლოთ 101-ზე.

მაგალითი #6: წევრთა ჯამი n-დან m-მდე

არითმეტიკული პროგრესიის ჯამის კიდევ ერთი ტიპიური მაგალითია შემდეგი: მოცემული რიცხვების სერია: 3, 7, 11, 15, ..., თქვენ უნდა იპოვოთ რა იქნება მისი წევრთა ჯამი 8-დან 14-მდე.

პრობლემა მოგვარებულია ორი გზით. პირველი მათგანი მოიცავს უცნობი ტერმინების მოძიებას 8-დან 14-მდე და შემდეგ მათი თანმიმდევრობით შეჯამება. ვინაიდან რამდენიმე ტერმინია, ეს მეთოდი არ არის საკმარისად შრომატევადი. მიუხედავად ამისა, შემოთავაზებულია ამ პრობლემის გადაჭრა მეორე მეთოდით, რომელიც უფრო უნივერსალურია.

იდეა არის მივიღოთ ფორმულა ალგებრული პროგრესიის ჯამისთვის m და n ტერმინებს შორის, სადაც n > m არის მთელი რიცხვები. ორივე შემთხვევისთვის ჩვენ ვწერთ ორ გამონათქვამს ჯამისთვის:

  1. S m \u003d m * (a m + a 1) / 2.
  2. S n \u003d n * (a n + a 1) / 2.

ვინაიდან n > m, აშკარაა, რომ 2 ჯამი მოიცავს პირველს. ბოლო დასკვნა ნიშნავს, რომ თუ ამ ჯამებს შორის განსხვავებას ავიღებთ და მას ტერმინს a m დავუმატებთ (განსხვავების აღების შემთხვევაში ის გამოვაკლდება S n ჯამს), მაშინ მივიღებთ ამოცანის აუცილებელ პასუხს. გვაქვს: S mn \u003d S n - S m + a m \u003d n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m \u003d a 1 * (n - m) / 2 + a n * n / 2 + a m * (1- m / 2). ამ გამოსახულებაში აუცილებელია n და m ფორმულების ჩანაცვლება. შემდეგ მივიღებთ: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d * (3 * m - m 2 - 2) / 2.

მიღებული ფორმულა გარკვეულწილად რთულია, თუმცა S mn ჯამი დამოკიდებულია მხოლოდ n, m, a 1 და d-ზე. ჩვენს შემთხვევაში, a 1 = 3, d = 4, n = 14, m = 8. ამ რიცხვების ჩანაცვლებით მივიღებთ: S mn = 301.

როგორც ზემოაღნიშნული ამონახსნებიდან ჩანს, ყველა პრობლემა ემყარება n-ე წევრის გამოხატვის ცოდნას და პირველი წევრთა სიმრავლის ჯამის ფორმულას. სანამ რომელიმე ამ პრობლემის გადაჭრას დაიწყებთ, რეკომენდებულია ყურადღებით წაიკითხოთ მდგომარეობა, ნათლად გაიგოთ რისი პოვნა გსურთ და მხოლოდ ამის შემდეგ გააგრძელოთ გამოსავალი.

კიდევ ერთი რჩევა არის სიმარტივისკენ სწრაფვა, ანუ თუ თქვენ შეგიძლიათ უპასუხოთ კითხვას რთული მათემატიკური გამოთვლების გარეშე, მაშინ სწორედ ეს უნდა გააკეთოთ, რადგან ამ შემთხვევაში შეცდომის დაშვების ალბათობა ნაკლებია. მაგალითად, არითმეტიკული პროგრესიის მაგალითში მე-6 ამონახსნით, შეიძლება შეჩერდეთ ფორმულაზე S mn \u003d n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m, და დაყავით ზოგადი დავალება ცალკეულ ქვეამოცნებებად (ამ შემთხვევაში ჯერ იპოვეთ ტერმინები a n და a).

თუ შედეგზე ეჭვი გეპარებათ, რეკომენდებულია მისი შემოწმება, როგორც ეს გაკეთდა ზოგიერთ მოყვანილ მაგალითში. როგორ მოვძებნოთ არითმეტიკული პროგრესია, გაირკვა. როგორც კი გაარკვიე, არც ისე რთულია.

თუ ყოველი ნატურალური რიცხვი ემთხვევა რეალურ რიცხვს a n , მაშინ ამბობენ, რომ მოცემული რიცხვების თანმიმდევრობა :

1 , 2 , 3 , . . . , a n , . . . .

ასე რომ, რიცხვითი მიმდევრობა არის ბუნებრივი არგუმენტის ფუნქცია.

ნომერი 1 დაურეკა მიმდევრობის პირველი წევრი , ნომერი 2 მიმდევრობის მეორე წევრი , ნომერი 3 მესამე და ა.შ. ნომერი a n დაურეკა მიმდევრობის მე-n წევრი და ნატურალური რიცხვი მისი ნომერი .

ორი მეზობელი წევრისგან a n და a n +1 წევრის თანმიმდევრობა a n +1 დაურეკა შემდგომი ( მიმართ a n ), ა a n წინა ( მიმართ a n +1 ).

მიმდევრობის დასაზუსტებლად, თქვენ უნდა მიუთითოთ მეთოდი, რომელიც საშუალებას მოგცემთ იპოვოთ მიმდევრობის წევრი ნებისმიერი რიცხვით.

ხშირად თანმიმდევრობა მოცემულია n-ე ტერმინის ფორმულები , ანუ ფორმულა, რომელიც საშუალებას გაძლევთ განსაზღვროთ მიმდევრობის წევრი მისი რიცხვით.

Მაგალითად,

დადებითი კენტი რიცხვების თანმიმდევრობა შეიძლება იყოს მოცემული ფორმულით

a n= 2n- 1,

და მონაცვლეობის თანმიმდევრობა 1 და -1 - ფორმულა

= (-1) +1 .

თანმიმდევრობა შეიძლება განისაზღვროს განმეორებითი ფორმულა, ანუ ფორმულა, რომელიც გამოხატავს მიმდევრობის რომელიმე წევრს, დაწყებული ზოგიერთით, წინა (ერთი ან მეტი) წევრის გავლით.

Მაგალითად,

თუ 1 = 1 , ა a n +1 = a n + 5

1 = 1,

2 = 1 + 5 = 1 + 5 = 6,

3 = 2 + 5 = 6 + 5 = 11,

4 = 3 + 5 = 11 + 5 = 16,

5 = 4 + 5 = 16 + 5 = 21.

Თუ a 1= 1, a 2 = 1, a n +2 = a n + a n +1 , მაშინ რიცხვითი მიმდევრობის პირველი შვიდი წევრი დაყენებულია შემდეგნაირად:

a 1 = 1,

a 2 = 1,

a 3 = a 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

a 5 = a 3 + a 4 = 2 + 3 = 5,

6 = 4 + 5 = 3 + 5 = 8,

7 = 5 + 6 = 5 + 8 = 13.

თანმიმდევრობა შეიძლება იყოს საბოლოო და გაუთავებელი .

თანმიმდევრობა ე.წ საბოლოო თუ მას ჰყავს წევრების სასრული რაოდენობა. თანმიმდევრობა ე.წ გაუთავებელი თუ მას უსასრულოდ ბევრი წევრი ჰყავს.

Მაგალითად,

ორნიშნა ნატურალური რიცხვების თანმიმდევრობა:

10, 11, 12, 13, . . . , 98, 99

საბოლოო.

ძირითადი რიცხვების თანმიმდევრობა:

2, 3, 5, 7, 11, 13, . . .

გაუთავებელი.

თანმიმდევრობა ე.წ იზრდება , თუ მისი ყოველი წევრი მეორიდან დაწყებული წინაზე მეტია.

თანმიმდევრობა ე.წ მცირდება , თუ მისი ყოველი წევრი მეორიდან დაწყებული წინაზე ნაკლებია.

Მაგალითად,

2, 4, 6, 8, . . . , 2, . . . არის აღმავალი მიმდევრობა;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 /, . . . არის დაღმავალი მიმდევრობა.

თანმიმდევრობას, რომლის ელემენტები არ მცირდება რიცხვის ზრდასთან ერთად, ან, პირიქით, არ იზრდება, ეწოდება ერთფეროვანი თანმიმდევრობა .

მონოტონური მიმდევრობები, კერძოდ, არის მზარდი და კლებადი მიმდევრობები.

არითმეტიკული პროგრესია

არითმეტიკული პროგრესია ეწოდება თანმიმდევრობა, რომლის თითოეული წევრი, მეორიდან დაწყებული, უდრის წინას, რომელსაც ემატება იგივე რიცხვი.

1 , 2 , 3 , . . . , a n, . . .

არის არითმეტიკული პროგრესია, თუ რომელიმე ნატურალური რიცხვისთვის პირობა დაკმაყოფილებულია:

a n +1 = a n + ,

სადაც - რაღაც ნომერი.

ამრიგად, სხვაობა მოცემული არითმეტიკული პროგრესიის შემდეგ და წინა წევრებს შორის ყოველთვის მუდმივია:

a 2 - 1 = a 3 - 2 = . . . = a n +1 - a n = .

ნომერი დაურეკა არითმეტიკული პროგრესიის სხვაობა.

არითმეტიკული პროგრესიის დასაყენებლად საკმარისია მიუთითოთ მისი პირველი წევრი და განსხვავება.

Მაგალითად,

თუ 1 = 3, = 4 , მაშინ მიმდევრობის პირველი ხუთი წევრი გვხვდება შემდეგნაირად:

a 1 =3,

a 2 = a 1 + = 3 + 4 = 7,

a 3 = a 2 + = 7 + 4 = 11,

a 4 = a 3 + = 11 + 4 = 15,

5 = 4 + = 15 + 4 = 19.

პირველი წევრის არითმეტიკული პროგრესიისთვის 1 და განსხვავება მისი

a n = a 1 + (- 1)დ.

Მაგალითად,

იპოვეთ არითმეტიკული პროგრესიის ოცდამეათე წევრი

1, 4, 7, 10, . . .

a 1 =1, = 3,

30 = a 1 + (30 - 1)d= 1 + 29· 3 = 88.

n-1 = a 1 + (- 2)დ,

a n= a 1 + (- 1)დ,

a n +1 = 1 + და,

მაშინ აშკარად

a n=
a n-1 + a n+1
2

არითმეტიკული პროგრესიის თითოეული წევრი, მეორედან დაწყებული, უდრის წინა და მომდევნო წევრების საშუალო არითმეტიკულს.

რიცხვები a, b და c არიან ზოგიერთი არითმეტიკული პროგრესიის თანმიმდევრული წევრები, თუ და მხოლოდ იმ შემთხვევაში, თუ ერთი მათგანი უდრის დანარჩენი ორის საშუალო არითმეტიკულს.

Მაგალითად,

a n = 2- 7 , არის არითმეტიკული პროგრესია.

მოდით გამოვიყენოთ ზემოთ მოცემული განცხადება. Ჩვენ გვაქვს:

a n = 2- 7,

n-1 = 2(n- 1) - 7 = 2- 9,

a n+1 = 2(n+ 1) - 7 = 2- 5.

აქედან გამომდინარე,

a n+1 + a n-1
=
2- 5 + 2- 9
= 2- 7 = a n,
2
2

Გაითვალისწინე - არითმეტიკული პროგრესიის მე-1 წევრი შეიძლება მოიძებნოს არა მხოლოდ მეშვეობით 1 , არამედ ნებისმიერი წინა

a n = + (- ).

Მაგალითად,

ამისთვის 5 შეიძლება დაიწეროს

a 5 = a 1 + 4,

a 5 = a 2 + 3,

a 5 = a 3 + 2,

a 5 = a 4 + .

a n = ნ-კ + კდ,

a n = a n+k - კდ,

მაშინ აშკარად

a n=
ნ-კ + ა n+k
2

არითმეტიკული პროგრესიის ნებისმიერი წევრი, მეორედან დაწყებული, უდრის ამ არითმეტიკული პროგრესიის წევრების ჯამის ნახევარს მისგან თანაბრად დაშორებული.

გარდა ამისა, ნებისმიერი არითმეტიკული პროგრესიისთვის, თანასწორობა მართალია:

a m + a n = a k + a l,

m + n = k + l.

Მაგალითად,

არითმეტიკული პროგრესიით

1) 10 = 28 = (25 + 31)/2 = ( 9 + 11 )/2;

2) 28 = ა 10 = a 3 + 7= 7 + 7 3 = 7 + 21 = 28;

3) ა 10= 28 = (19 + 37)/2 = (7 + 13)/2;

4) a 2 + a 12 = a 5 + a 9, როგორც

2 + 12= 4 + 34 = 38,

5 + 9 = 13 + 25 = 38.

S n= a 1 + a 2 + a 3 +. . .+ a n,

პირველი არითმეტიკული პროგრესიის წევრები უდრის უკიდურესი წევრთა ჯამის ნახევრის ნამრავლს წევრთა რაოდენობის მიხედვით:

აქედან, კერძოდ, გამომდინარეობს, რომ თუ საჭიროა ვადების შეჯამება

, +1 , . . . , a n,

მაშინ წინა ფორმულა ინარჩუნებს თავის სტრუქტურას:

Მაგალითად,

არითმეტიკული პროგრესიით 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = 10 - 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

თუ მოცემულია არითმეტიკული პროგრესია, მაშინ რაოდენობები 1 , a n, , და დაკავშირებულია ორი ფორმულით:

მაშასადამე, თუ მოცემულია ამ რაოდენობის სამის მნიშვნელობები, მაშინ დანარჩენი ორი სიდიდის შესაბამისი მნიშვნელობები განისაზღვრება ამ ფორმულებიდან, რომლებიც გაერთიანებულია ორი განტოლების სისტემაში ორი უცნობით.

არითმეტიკული პროგრესია არის მონოტონური თანმიმდევრობა. სადაც:

  • თუ > 0 , მაშინ ის იზრდება;
  • თუ < 0 , მაშინ ის მცირდება;
  • თუ = 0 , მაშინ თანმიმდევრობა სტაციონარული იქნება.

გეომეტრიული პროგრესია

გეომეტრიული პროგრესია ეწოდება თანმიმდევრობა, რომლის თითოეული წევრი, მეორიდან დაწყებული, უდრის წინას, გამრავლებული იმავე რიცხვზე.

1 , 2 , 3 , . . . , ბ ნ, . . .

არის გეომეტრიული პროგრესია, თუ რომელიმე ნატურალური რიცხვისთვის პირობა დაკმაყოფილებულია:

ბ ნ +1 = ბ ნ · ,

სადაც ≠ 0 - რაღაც ნომერი.

ამრიგად, ამ გეომეტრიული პროგრესიის შემდეგი წევრის თანაფარდობა წინასთან არის მუდმივი რიცხვი:

2 / 1 = 3 / 2 = . . . = ბ ნ +1 / ბ ნ = .

ნომერი დაურეკა გეომეტრიული პროგრესიის მნიშვნელი.

გეომეტრიული პროგრესიის დასაყენებლად საკმარისია მიუთითოთ მისი პირველი წევრი და მნიშვნელი.

Მაგალითად,

თუ 1 = 1, = -3 , მაშინ მიმდევრობის პირველი ხუთი წევრი გვხვდება შემდეგნაირად:

ბ 1 = 1,

ბ 2 = ბ 1 · = 1 · (-3) = -3,

ბ 3 = ბ 2 · = -3 · (-3) = 9,

ბ 4 = ბ 3 · = 9 · (-3) = -27,

5 = 4 · = -27 · (-3) = 81.

1 და მნიშვნელი მისი - ტერმინი შეიძლება მოიძებნოს ფორმულით:

ბ ნ = 1 · q n -1 .

Მაგალითად,

იპოვეთ გეომეტრიული პროგრესიის მეშვიდე წევრი 1, 2, 4, . . .

1 = 1, = 2,

7 = 1 · 6 = 1 2 6 = 64.

ბნ-1 = ბ 1 · q n -2 ,

ბ ნ = ბ 1 · q n -1 ,

ბ ნ +1 = 1 · q n,

მაშინ აშკარად

ბ ნ 2 = ბ ნ -1 · ბ ნ +1 ,

გეომეტრიული პროგრესიის თითოეული წევრი, მეორიდან დაწყებული, უდრის წინა და მომდევნო წევრების გეომეტრიულ საშუალოს (პროპორციულს).

ვინაიდან საპირისპირო ასევე მართალია, შემდეგი მტკიცება მოქმედებს:

რიცხვები a, b და c არიან გარკვეული გეომეტრიული პროგრესიის თანმიმდევრული წევრები, თუ და მხოლოდ იმ შემთხვევაში, თუ ერთი მათგანის კვადრატი უდრის დანარჩენი ორის ნამრავლს, ანუ რიცხვებიდან ერთი არის დანარჩენი ორის გეომეტრიული საშუალო.

Მაგალითად,

დავამტკიცოთ, რომ ფორმულით მოცემული თანმიმდევრობა ბ ნ= -3 2 , არის გეომეტრიული პროგრესია. მოდით გამოვიყენოთ ზემოთ მოცემული განცხადება. Ჩვენ გვაქვს:

ბ ნ= -3 2 ,

ბ ნ -1 = -3 2 -1 ,

ბ ნ +1 = -3 2 +1 .

აქედან გამომდინარე,

ბ ნ 2 = (-3 2 ) 2 = (-3 2 -1 ) (-3 2 +1 ) = ბ ნ -1 · ბ ნ +1 ,

რომელიც ამტკიცებს საჭირო მტკიცებას.

Გაითვალისწინე გეომეტრიული პროგრესიის ტერმინი შეიძლება მოიძებნოს არა მხოლოდ მეშვეობით 1 , არამედ ნებისმიერი წინა ტერმინი ბ კ , რისთვისაც საკმარისია ფორმულის გამოყენება

ბ ნ = ბ კ · q n - .

Მაგალითად,

ამისთვის 5 შეიძლება დაიწეროს

ბ 5 = ბ 1 · 4 ,

ბ 5 = ბ 2 · q 3,

ბ 5 = ბ 3 · q2,

ბ 5 = ბ 4 · .

ბ ნ = ბ კ · q n - ,

ბ ნ = ბ ნ - · q k,

მაშინ აშკარად

ბ ნ 2 = ბ ნ - · ბ ნ +

გეომეტრიული პროგრესიის ნებისმიერი წევრის კვადრატი, მეორიდან დაწყებული, უდრის მისგან თანაბარ მანძილზე დაშორებული ამ პროგრესიის წევრების ნამრავლს.

გარდა ამისა, ნებისმიერი გეომეტრიული პროგრესიისთვის, თანასწორობა მართალია:

ბ მ· ბ ნ= ბ კ· ბ ლ,

+ = + .

Მაგალითად,

ექსპონენტურად

1) 6 2 = 32 2 = 1024 = 16 · 64 = 5 · 7 ;

2) 1024 = 11 = 6 · 5 = 32 · 2 5 = 1024;

3) 6 2 = 32 2 = 1024 = 8 · 128 = 4 · 8 ;

4) 2 · 7 = 4 · 5 , როგორც

2 · 7 = 2 · 64 = 128,

4 · 5 = 8 · 16 = 128.

S n= 1 + 2 + 3 + . . . + ბ ნ

პირველი გეომეტრიული პროგრესიის წევრები მნიშვნელით 0 გამოითვლება ფორმულით:

Და როცა = 1 - ფორმულის მიხედვით

S n= ნ.ბ. 1

გაითვალისწინეთ, რომ თუ დაგვჭირდება ტერმინების შეჯამება

ბ კ, ბ კ +1 , . . . , ბ ნ,

შემდეგ გამოიყენება ფორმულა:

S n- სკ -1 = ბ კ + ბ კ +1 + . . . + ბ ნ = ბ კ · 1 - q n - +1
.
1 -

Მაგალითად,

ექსპონენტურად 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = 10 - 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

თუ მოცემულია გეომეტრიული პროგრესია, მაშინ რაოდენობები 1 , ბ ნ, , და S n დაკავშირებულია ორი ფორმულით:

მაშასადამე, თუ მოცემული სიდიდეებიდან რომელიმე სამის მნიშვნელობებია მოცემული, მაშინ დანარჩენი ორი სიდიდის შესაბამისი მნიშვნელობები განისაზღვრება ამ ფორმულებიდან, რომლებიც გაერთიანებულია ორი განტოლების სისტემაში ორი უცნობით.

პირველი ტერმინით გეომეტრიული პროგრესიისთვის 1 და მნიშვნელი ხდება შემდეგი ერთფეროვნების თვისებები :

  • პროგრესი იზრდება, თუ დაკმაყოფილებულია ერთ-ერთი შემდეგი პირობა:

1 > 0 და > 1;

1 < 0 და 0 < < 1;

  • პროგრესირება მცირდება, თუ დაკმაყოფილებულია ერთ-ერთი შემდეგი პირობა:

1 > 0 და 0 < ქ< 1;

1 < 0 და > 1.

Თუ ქ< 0 , მაშინ გეომეტრიული პროგრესია არის ნიშნის ალტერნატიული: მის კენტ რიცხვიან წევრებს აქვთ იგივე ნიშანი, რაც მის პირველ წევრს, ხოლო ლუწი რიცხვებს აქვთ საპირისპირო ნიშანი. ნათელია, რომ ალტერნატიული გეომეტრიული პროგრესია არ არის მონოტონური.

პროდუქტი პირველი გეომეტრიული პროგრესიის პირობები შეიძლება გამოითვალოს ფორმულით:

P n= ბ 1 · ბ 2 · ბ 3 · . . . · ბ ნ = (ბ 1 · ბ ნ) / 2 .

Მაგალითად,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

უსასრულოდ კლებადი გეომეტრიული პროგრესია

უსასრულოდ კლებადი გეომეტრიული პროგრესია ეწოდება უსასრულო გეომეტრიულ პროგრესიას, რომლის მნიშვნელის მოდული ნაკლებია 1 , ე.ი

|| < 1 .

გაითვალისწინეთ, რომ უსასრულოდ კლებადი გეომეტრიული პროგრესია შეიძლება არ იყოს კლებადი მიმდევრობა. ეს უხდება საქმეს

1 < ქ< 0 .

ასეთი მნიშვნელით, თანმიმდევრობა ნიშან-ალტერნატიულია. Მაგალითად,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

უსასრულოდ კლებადი გეომეტრიული პროგრესიის ჯამი დაასახელეთ რიცხვი, რომელსაც პირველის ჯამი პროგრესირების პირობები რიცხვის შეუზღუდავი ზრდით . ეს რიცხვი ყოველთვის სასრულია და გამოიხატება ფორმულით

= 1 + 2 + 3 + . . . = 1
.
1 -

Მაგალითად,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

არითმეტიკული და გეომეტრიული პროგრესიების კავშირი

არითმეტიკული და გეომეტრიული პროგრესიები მჭიდრო კავშირშია. განვიხილოთ მხოლოდ ორი მაგალითი.

1 , 2 , 3 , . . . , მაშინ

ბ ა 1 , ბ ა 2 , ბ ა 3 , . . . ბ დ .

Მაგალითად,

1, 3, 5, . . . - არითმეტიკული პროგრესია სხვაობით 2 და

7 1 , 7 3 , 7 5 , . . . არის გეომეტრიული პროგრესია მნიშვნელით 7 2 .

1 , 2 , 3 , . . . არის გეომეტრიული პროგრესია მნიშვნელით , მაშინ

შესვლა a b 1, შესვლა a b 2, log a b 3, . . . - არითმეტიკული პროგრესია სხვაობით ჟურნალი ა .

Მაგალითად,

2, 12, 72, . . . არის გეომეტრიული პროგრესია მნიშვნელით 6 და

ლგ 2, ლგ 12, ლგ 72, . . . - არითმეტიკული პროგრესია სხვაობით ლგ 6 .

პირველი დონე

არითმეტიკული პროგრესია. დეტალური თეორია მაგალითებით (2019)

რიცხვითი თანმიმდევრობა

მოდით დავსხდეთ და დავიწყოთ რამდენიმე რიცხვის წერა. Მაგალითად:
თქვენ შეგიძლიათ დაწეროთ ნებისმიერი რიცხვი და შეიძლება იყოს რამდენიც გსურთ (ჩვენს შემთხვევაში, ისინი). რამდენი რიცხვიც არ უნდა დავწეროთ, ყოველთვის შეგვიძლია ვთქვათ, რომელია პირველი, რომელია მეორე და ასე შემდეგ ბოლომდე, ანუ შეგვიძლია მათი დათვლა. ეს არის რიცხვების თანმიმდევრობის მაგალითი:

რიცხვითი თანმიმდევრობა
მაგალითად, ჩვენი თანმიმდევრობისთვის:

მინიჭებული ნომერი სპეციფიკურია მხოლოდ ერთი რიგითი ნომრისთვის. სხვა სიტყვებით რომ ვთქვათ, მიმდევრობაში არ არის სამი მეორე რიცხვი. მეორე რიცხვი (ისევე როგორც -ე რიცხვი) ყოველთვის იგივეა.
რიცხვის მქონე რიცხვს მიმდევრობის მე-მე წევრი ეწოდება.

ჩვენ ჩვეულებრივ მთელ მიმდევრობას ვუწოდებთ რაღაც ასოს (მაგალითად,) და ამ მიმდევრობის თითოეულ წევრს - იგივე ასო, ამ წევრის რიცხვის ტოლი ინდექსით: .

ჩვენს შემთხვევაში:

ვთქვათ, გვაქვს რიცხვითი მიმდევრობა, რომელშიც სხვაობა მეზობელ რიცხვებს შორის არის იგივე და ტოლი.
Მაგალითად:

და ა.შ.
ასეთ რიცხვობრივ მიმდევრობას არითმეტიკული პროგრესია ეწოდება.
ტერმინი „პროგრესია“ შემოიღო რომაელმა ავტორმა ბოეტიუსმა ჯერ კიდევ VI საუკუნეში და ფართო გაგებით გაიგო, როგორც გაუთავებელი რიცხვითი თანმიმდევრობა. სახელწოდება "არითმეტიკა" გადავიდა უწყვეტი პროპორციების თეორიიდან, რომლითაც ძველი ბერძნები იყვნენ დაკავებულნი.

ეს არის რიცხვითი თანმიმდევრობა, რომლის თითოეული წევრი უდრის წინას, დამატებული იგივე რიცხვით. ამ რიცხვს ეწოდება არითმეტიკული პროგრესიის სხვაობა და აღინიშნება.

შეეცადეთ დაადგინოთ, რომელი რიცხვების მიმდევრობაა არითმეტიკული პროგრესია და რომელი არა:

ა)
ბ)
გ)
დ)

Გავიგე? შეადარეთ ჩვენი პასუხები:
არისარითმეტიკული პროგრესია - b, c.
Არ არისარითმეტიკული პროგრესია - ა, დ.

დავუბრუნდეთ მოცემულ პროგრესიას () და ვეცადოთ ვიპოვოთ მისი th წევრის მნიშვნელობა. არსებობს ორიმისი პოვნის გზა.

1. მეთოდი

ჩვენ შეგვიძლია დავამატოთ პროგრესიის ნომრის წინა მნიშვნელობა, სანამ არ მივაღწევთ პროგრესიის მე-6 ტერმინს. კარგია, რომ შეჯამება ბევრი არ გვაქვს - მხოლოდ სამი მნიშვნელობა:

ასე რომ, აღწერილი არითმეტიკული პროგრესიის მე-მე წევრი უდრის.

2. მეთოდი

რა მოხდება, თუ გვჭირდებოდა პროგრესიის მე-ე ტერმინის მნიშვნელობის პოვნა? შეჯამება ერთ საათზე მეტს დაგვჭირდებოდა და ფაქტი არ არის, რომ რიცხვების შეკრებისას შეცდომას არ დავუშვებდით.
რა თქმა უნდა, მათემატიკოსებმა მოიგონეს გზა, რომლითაც არ დაგჭირდებათ არითმეტიკული პროგრესიის სხვაობის დამატება წინა მნიშვნელობაზე. დააკვირდით დახატულ სურათს... რა თქმა უნდა, თქვენ უკვე შენიშნეთ გარკვეული ნიმუში, კერძოდ:

მაგალითად, ვნახოთ, რა შეადგენს ამ არითმეტიკული პროგრესიის --ე წევრის მნიშვნელობას:


Სხვა სიტყვებით:

შეეცადეთ დამოუკიდებლად იპოვოთ ამ გზით ამ არითმეტიკული პროგრესიის წევრის მნიშვნელობა.

გათვლილი? შეადარეთ თქვენი ჩანაწერები პასუხთან:

მიაქციეთ ყურადღება, რომ ზუსტად იგივე რიცხვი მიიღეთ, რაც წინა მეთოდში, როდესაც ჩვენ თანმიმდევრულად ვამატებთ არითმეტიკული პროგრესიის წევრებს წინა მნიშვნელობას.
შევეცადოთ ამ ფორმულის „დეპერსონალიზაცია“ - მოდი, შემოვიტანოთ იგი ზოგადი ფორმადა მიიღე:

არითმეტიკული პროგრესიის განტოლება.

არითმეტიკული პროგრესიები იზრდება ან მცირდება.

მზარდი- პროგრესები, რომლებშიც ტერმინების ყოველი მომდევნო მნიშვნელობა წინაზე მეტია.
Მაგალითად:

Დაღმავალი- პროგრესები, რომლებშიც ტერმინების ყოველი მომდევნო მნიშვნელობა წინაზე ნაკლებია.
Მაგალითად:

მიღებული ფორმულა გამოიყენება არითმეტიკული პროგრესიის როგორც მზარდი, ისე კლებადი ტერმინების გამოთვლაში.
მოდით შევამოწმოთ პრაქტიკაში.
ჩვენ გვეძლევა არითმეტიკული პროგრესია, რომელიც შედგება შემდეგი რიცხვებისგან:


Მას შემდეგ:

ამრიგად, ჩვენ დავრწმუნდით, რომ ფორმულა მუშაობს როგორც შემცირებაში, ასევე არითმეტიკული პროგრესიის გაზრდისას.
ეცადეთ, დამოუკიდებლად იპოვოთ ამ არითმეტიკული პროგრესიის მე-მე-ე წევრები.

მოდით შევადაროთ შედეგები:

არითმეტიკული პროგრესიის თვისება

დავალება გავართულოთ – გამოვიყვანთ არითმეტიკული პროგრესიის თვისებას.
დავუშვათ, რომ გვაქვს შემდეგი პირობა:
- არითმეტიკული პროგრესია, იპოვნეთ მნიშვნელობა.
ადვილია, თქვენ ამბობთ, და დაიწყეთ დათვლა იმ ფორმულის მიხედვით, რომელიც უკვე იცით:

მოდით, ა, მაშინ:

Აბსოლუტურად სწორი. გამოდის, რომ ჯერ ვპოულობთ, შემდეგ ვამატებთ პირველ რიცხვს და ვიღებთ იმას, რასაც ვეძებთ. თუ პროგრესია წარმოდგენილია მცირე მნიშვნელობებით, მაშინ ამაში არაფერია რთული, მაგრამ რა მოხდება, თუ პირობით რიცხვებს მოგვცემენ? გეთანხმებით, არის გამოთვლებში შეცდომების დაშვების შესაძლებლობა.
ახლა დაფიქრდით, შესაძლებელია თუ არა ამ პრობლემის გადაჭრა რომელიმე ფორმულით ერთი ნაბიჯით? რა თქმა უნდა, დიახ, და ჩვენ შევეცდებით ახლავე გამოვიტანოთ.

მოდით აღვნიშნოთ არითმეტიკული პროგრესიის სასურველი ტერმინი, როგორც ვიცით მისი პოვნის ფორმულა - ეს არის იგივე ფორმულა, რომელიც ჩვენ გამოვიღეთ დასაწყისში:
, შემდეგ:

  • პროგრესის წინა წევრია:
  • პროგრესის შემდეგი ტერმინი არის:

მოდით შევაჯამოთ პროგრესის წინა და შემდეგი წევრები:

გამოდის, რომ პროგრესიის წინა და მომდევნო წევრების ჯამი ორჯერ აღემატება მათ შორის მდებარე პროგრესიის წევრის მნიშვნელობას. სხვა სიტყვებით რომ ვთქვათ, იმისათვის, რომ იპოვოთ პროგრესიული წევრის მნიშვნელობა ცნობილი წინა და თანმიმდევრული მნიშვნელობებით, აუცილებელია მათი დამატება და გაყოფა.

მართალია, იგივე ნომერი მივიღეთ. გავასწოროთ მასალა. თავად გამოთვალეთ პროგრესის ღირებულება, რადგან ეს საერთოდ არ არის რთული.

კარგად გააკეთე! თქვენ თითქმის ყველაფერი იცით პროგრესის შესახებ! რჩება მხოლოდ ერთი ფორმულის გარკვევა, რომელიც, ლეგენდის თანახმად, ყველა დროის ერთ-ერთმა უდიდესმა მათემატიკოსმა, "მათემატიკოსთა მეფემ" - კარლ გაუსმა, თავისთვის ადვილად გამოიტანა...

როდესაც კარლ გაუსი 9 წლის იყო, მასწავლებელმა, რომელიც დაკავებული იყო სხვა კლასის მოსწავლეების მუშაობის შემოწმებით, გაკვეთილზე დაუსვა შემდეგი დავალება: „გამოთვალეთ ყველა ნატურალური რიცხვის ჯამი მდე (სხვა წყაროების მიხედვით) ჩათვლით. " რა იყო მასწავლებელს სიურპრიზი, როდესაც მისმა ერთ-ერთმა მოსწავლემ (ეს იყო კარლ გაუსმა) ერთი წუთის შემდეგ გასცა სწორი პასუხი დავალებას, მაშინ როცა გაბედულის თანაკლასელების უმეტესობამ გრძელი გამოთვლების შემდეგ არასწორი შედეგი მიიღო ...

ახალგაზრდა კარლ გაუსმა შენიშნა ნიმუში, რომელსაც ადვილად შეამჩნევთ.
ვთქვათ, გვაქვს არითმეტიკული პროგრესია, რომელიც შედგება -ti წევრებისაგან: უნდა ვიპოვოთ არითმეტიკული პროგრესიის მოცემული წევრების ჯამი. რა თქმა უნდა, ჩვენ შეგვიძლია ხელით შევაჯამოთ ყველა მნიშვნელობა, მაგრამ რა მოხდება, თუ დავალებაში უნდა ვიპოვოთ მისი ტერმინების ჯამი, როგორც ამას გაუსი ეძებდა?

მოდით გამოვსახოთ ჩვენთვის მოცემული პროგრესი. კარგად დააკვირდით მონიშნულ რიცხვებს და შეეცადეთ მათთან ერთად შეასრულოთ სხვადასხვა მათემატიკური მოქმედებები.


სცადე? რა შეამჩნიე? სწორად! მათი ჯამები ტოლია


ახლა უპასუხეთ, რამდენი ასეთი წყვილი იქნება ჩვენთვის მოცემულ პროგრესში? რა თქმა უნდა, ყველა რიცხვის ზუსტად ნახევარი, ანუ.
გამომდინარე იქიდან, რომ არითმეტიკული პროგრესიის ორი წევრის ჯამი ტოლია და მსგავსი ტოლი წყვილები, მივიღებთ, რომ ჯამი უდრის:
.
ამრიგად, ნებისმიერი არითმეტიკული პროგრესიის პირველი წევრთა ჯამის ფორმულა იქნება:

ზოგიერთ პრობლემაში ჩვენ არ ვიცით ტერმინი, მაგრამ ვიცით პროგრესირების განსხვავება. შეეცადეთ ჯამის ფორმულაში ჩაანაცვლოთ მე-1 წევრის ფორმულა.
Რა მიიღე?

კარგად გააკეთე! ახლა დავუბრუნდეთ პრობლემას, რომელიც მიეცა კარლ გაუსს: თავად გამოთვალეთ რა არის -th-დან დაწყებული რიცხვების ჯამი და -th-დან დაწყებული რიცხვების ჯამი.

რამდენი მიიღეთ?
გაუსმა გაირკვა, რომ წევრთა ჯამი ტოლია და ტერმინთა ჯამი. ასე გადაწყვიტე?

სინამდვილეში, არითმეტიკული პროგრესიის წევრთა ჯამის ფორმულა დაამტკიცა ძველმა ბერძენმა მეცნიერმა დიოფანტმა ჯერ კიდევ მე-3 საუკუნეში და მთელი ამ ხნის განმავლობაში მახვილგონივრული ადამიანები იყენებდნენ არითმეტიკული პროგრესიის თვისებებს დიდი და მთავარი.
მაგალითად, წარმოიდგინეთ ძველი ეგვიპტე და იმ დროის უდიდესი სამშენებლო მოედანი - პირამიდის აგება... ფიგურაში ჩანს მისი ერთი მხარე.

სად არის აქ პროგრესი შენ ამბობ? დააკვირდით და იპოვეთ ნიმუში ქვიშის ბლოკების რაოდენობაში პირამიდის კედლის თითოეულ რიგში.


რატომ არა არითმეტიკული პროგრესია? დათვალეთ რამდენი ბლოკია საჭირო ერთი კედლის ასაშენებლად, თუ ბლოკის აგური მოთავსებულია ბაზაში. იმედი მაქვს, მონიტორზე თითის გადაადგილებით არ ითვლით, გახსოვთ ბოლო ფორმულა და ყველაფერი რაც ვთქვით არითმეტიკული პროგრესიის შესახებ?

ამ შემთხვევაში, პროგრესი ასე გამოიყურება:
არითმეტიკული პროგრესიის სხვაობა.
არითმეტიკული პროგრესიის წევრთა რაოდენობა.
მოდით ჩავანაცვლოთ ჩვენი მონაცემები ბოლო ფორმულებში (ჩვენ ვითვლით ბლოკების რაოდენობას 2 გზით).

მეთოდი 1.

მეთოდი 2.

ახლა თქვენ ასევე შეგიძლიათ გამოთვალოთ მონიტორზე: შეადარეთ მიღებული მნიშვნელობები ჩვენს პირამიდაში არსებული ბლოკების რაოდენობასთან. დათანხმდა? კარგად გააკეთეთ, თქვენ აითვისეთ არითმეტიკული პროგრესიის მე-6 წევრთა ჯამი.
რა თქმა უნდა, თქვენ არ შეგიძლიათ პირამიდის აშენება ბაზაზე არსებული ბლოკებიდან, მაგრამ? შეეცადეთ გამოთვალოთ რამდენი ქვიშის აგურია საჭირო ამ პირობით კედლის ასაშენებლად.
მოახერხე?
სწორი პასუხი არის ბლოკები:

Ვარჯიში

Დავალებები:

  1. მაშა ზაფხულისთვის ფორმაში დგება. ყოველდღე ის ზრდის ჩაჯდომების რაოდენობას. რამდენჯერ დაიძვრება მაშა კვირებში, თუ პირველ ვარჯიშზე ჯდება.
  2. რა არის ყველა კენტი რიცხვის ჯამი, რომელიც შეიცავს.
  3. მორების შენახვისას, მეტყევეები აწყობენ მათ ისე, რომ ყოველი ზედა ფენა შეიცავს წინაზე ერთით ნაკლებ მორს. რამდენი მორი არის ერთ ქვისა, თუ ქვისა ძირი არის მორები.

პასუხები:

  1. მოდით განვსაზღვროთ არითმეტიკული პროგრესიის პარამეტრები. Ამ შემთხვევაში
    (კვირები = დღეები).

    პასუხი:ორ კვირაში მაშა დღეში ერთხელ უნდა იჯდეს.

  2. პირველი კენტი რიცხვი, ბოლო რიცხვი.
    არითმეტიკული პროგრესიის სხვაობა.
    კენტი რიცხვების რაოდენობა ნახევარში, თუმცა, შეამოწმეთ ეს ფაქტი არითმეტიკული პროგრესიის მე-მე წევრის საპოვნელად ფორმულის გამოყენებით:

    რიცხვები შეიცავს კენტ რიცხვებს.
    ჩვენ ვცვლით არსებულ მონაცემებს ფორმულაში:

    პასუხი:ყველა კენტი რიცხვის ჯამი, რომელიც შეიცავს მას უდრის.

  3. გაიხსენეთ პრობლემა პირამიდების შესახებ. ჩვენს შემთხვევაში, a, რადგან თითოეული ზედა ფენა მცირდება ერთი ჟურნალით, არის მხოლოდ რამდენიმე ფენა, ანუ.
    ჩაანაცვლეთ მონაცემები ფორმულაში:

    პასუხი:ქვისა არის მორები.

შეჯამება

  1. - რიცხვითი თანმიმდევრობა, რომელშიც სხვაობა მიმდებარე რიცხვებს შორის არის იგივე და ტოლი. ის იზრდება და მცირდება.
  2. ფორმულის პოვნაარითმეტიკული პროგრესიის მე-1 წევრი იწერება ფორმულით - , სადაც არის რიცხვების რაოდენობა პროგრესიაში.
  3. არითმეტიკული პროგრესიის წევრების თვისება- - სადაც - რიცხვების რაოდენობა პროგრესიაში.
  4. არითმეტიკული პროგრესიის წევრთა ჯამიშეიძლება მოიძებნოს ორი გზით:

    , სადაც არის მნიშვნელობების რაოდენობა.

არითმეტიკული პროგრესია. შუა დონე

რიცხვითი თანმიმდევრობა

დავსხდეთ და დავიწყოთ რამდენიმე რიცხვის წერა. Მაგალითად:

შეგიძლიათ დაწეროთ ნებისმიერი რიცხვი და შეიძლება იყოს რამდენიც გსურთ. მაგრამ ყოველთვის შეგიძლიათ გაიგოთ, რომელი მათგანია პირველი, რომელია მეორე და ასე შემდეგ, ანუ შეგვიძლია მათი დათვლა. ეს არის რიცხვების მიმდევრობის მაგალითი.

რიცხვითი თანმიმდევრობაარის რიცხვების ნაკრები, რომელთაგან თითოეულს შეიძლება მიენიჭოს უნიკალური ნომერი.

სხვა სიტყვებით რომ ვთქვათ, თითოეული რიცხვი შეიძლება ასოცირებული იყოს გარკვეულ ნატურალურ რიცხვთან და მხოლოდ ერთთან. და ჩვენ არ მივანიჭებთ ამ ნომერს ამ ნაკრებიდან არცერთ სხვა ნომერს.

რიცხვის მქონე რიცხვს მიმდევრობის მე-მე წევრი ეწოდება.

ჩვენ ჩვეულებრივ მთელ მიმდევრობას ვუწოდებთ რაღაც ასოს (მაგალითად,) და ამ მიმდევრობის თითოეულ წევრს - იგივე ასო, ამ წევრის რიცხვის ტოლი ინდექსით: .

ძალიან მოსახერხებელია, თუ მიმდევრობის მე-მე წევრი შეიძლება მიცემული იყოს რაიმე ფორმულით. მაგალითად, ფორმულა

ადგენს თანმიმდევრობას:

და ფორმულა არის შემდეგი თანმიმდევრობა:

მაგალითად, არითმეტიკული პროგრესია არის თანმიმდევრობა (პირველი წევრი აქ ტოლია და განსხვავება). ან (, განსხვავება).

მე-n ტერმინის ფორმულა

ჩვენ განმეორებით ფორმულას ვუწოდებთ ისეთ ფორმულას, რომელშიც, რათა გაირკვეს ტერმინი, თქვენ უნდა იცოდეთ წინა ან რამდენიმე წინა:

ასეთი ფორმულის გამოყენებით, მაგალითად, პროგრესიის მეათე წევრის საპოვნელად, უნდა გამოვთვალოთ წინა ცხრა. მაგალითად, მოდით. შემდეგ:

აბა, ახლა გასაგებია, რა ფორმულაა?

თითოეულ სტრიქონში ვამატებთ, ვამრავლებთ რაღაც რიცხვზე. Რისთვის? ძალიან მარტივია: ეს არის ამჟამინდელი წევრის რიცხვი მინუს:

ახლა ბევრად უფრო კომფორტულია, არა? ჩვენ ვამოწმებთ:

თავად გადაწყვიტე:

არითმეტიკული პროგრესიის დროს იპოვეთ n-ე წევრის ფორმულა და იპოვეთ მეასე წევრი.

გადაწყვეტილება:

პირველი წევრი თანაბარია. და რა განსხვავებაა? და აი რა:

(მას ხომ განსხვავება ჰქვია, რადგან უდრის პროგრესიის თანმიმდევრული წევრების სხვაობას).

ასე რომ, ფორმულა არის:

მაშინ მეასე წევრია:

რა არის ყველა ნატურალური რიცხვის ჯამი დან?

ლეგენდის თანახმად, დიდმა მათემატიკოსმა კარლ გაუსმა, როგორც 9 წლის ბიჭი, რამდენიმე წუთში გამოთვალა ეს თანხა. მან შეამჩნია, რომ პირველი და ბოლო რიცხვის ჯამი ტოლია, მეორე და წინაბოლო რიცხვის ჯამი იგივეა, ბოლოდან მესამე და მე-3-ის ჯამი იგივეა და ა.შ. რამდენი ასეთი წყვილია? მართალია, ყველა რიცხვის ზუსტად ნახევარი, ანუ. Ისე,

ნებისმიერი არითმეტიკული პროგრესიის პირველი წევრთა ჯამის ზოგადი ფორმულა იქნება:

მაგალითი:
იპოვეთ ყველა ორნიშნა ჯერადი ჯამი.

გადაწყვეტილება:

პირველი ასეთი რიცხვია. ყოველი შემდეგი მიიღება წინა რიცხვის მიმატებით. ამრიგად, ჩვენთვის საინტერესო რიცხვები ქმნიან არითმეტიკულ პროგრესიას პირველი წევრით და სხვაობით.

ამ პროგრესირების ტერმინის ფორმულა არის:

რამდენი წევრია პროგრესიაში, თუ ისინი ყველა ორნიშნა უნდა იყოს?

ძალიან ადვილია:.

პროგრესირების ბოლო ვადა თანაბარი იქნება. შემდეგ ჯამი:

პასუხი:.

ახლა თავად გადაწყვიტე:

  1. ყოველდღე სპორტსმენი დარბის 1 მეტრით მეტს, ვიდრე წინა დღეს. რამდენ კილომეტრს გაივლის ის კვირებში, თუ პირველ დღეს კმ მ გაირბინა?
  2. ველოსიპედისტი ყოველდღიურად უფრო მეტ მილს ატარებს, ვიდრე წინა. პირველ დღეს მან გაიარა კმ. რამდენი დღე უნდა იაროს კილომეტრის დასაფარად? რამდენ კილომეტრს გაივლის ის მოგზაურობის ბოლო დღეს?
  3. მაღაზიაში მაცივრის ფასი ყოველწლიურად ამდენივე მცირდება. დაადგინეთ, რამდენად იკლებს მაცივრის ფასი ყოველწლიურად, თუ გასაყიდად რუბლებში იყო გამოტანილი, ექვსი წლის შემდეგ ის გაიყიდა რუბლებში.

პასუხები:

  1. აქ ყველაზე მნიშვნელოვანი არის არითმეტიკული პროგრესიის ამოცნობა და მისი პარამეტრების დადგენა. ამ შემთხვევაში, (კვირები = დღეები). თქვენ უნდა განსაზღვროთ ამ პროგრესიის პირველი პუნქტების ჯამი:
    .
    პასუხი:
  2. აქ მოცემულია:, აუცილებელია იპოვოთ.
    ცხადია, თქვენ უნდა გამოიყენოთ იგივე ჯამის ფორმულა, როგორც წინა პრობლემაში:
    .
    შეცვალეთ მნიშვნელობები:

    ფესვი აშკარად არ ჯდება, ამიტომ პასუხი.
    გამოვთვალოთ ბოლო დღის მანძილზე გავლილი მანძილი --ე წევრის ფორმულით:
    (კმ).
    პასუხი:

  3. მოცემული: . Პოვნა: .
    ეს არ არის ადვილი:
    (რუბში).
    პასუხი:

არითმეტიკული პროგრესია. მოკლედ მთავარის შესახებ

ეს არის რიცხვითი თანმიმდევრობა, რომელშიც სხვაობა მიმდებარე რიცხვებს შორის იგივე და ტოლია.

არითმეტიკული პროგრესია იზრდება () და მცირდება ().

Მაგალითად:

არითმეტიკული პროგრესიის n-ე წევრის პოვნის ფორმულა

იწერება ფორმულის სახით, სადაც არის რიცხვების რაოდენობა პროგრესიაში.

არითმეტიკული პროგრესიის წევრების თვისება

ეს აადვილებს პროგრესიის წევრის პოვნას, თუ ცნობილია მისი მეზობელი წევრები - სად არის რიცხვების რაოდენობა პროგრესიაში.

არითმეტიკული პროგრესიის წევრთა ჯამი

ჯამის პოვნის ორი გზა არსებობს:

სად არის მნიშვნელობების რაოდენობა.

სად არის მნიშვნელობების რაოდენობა.

ხო, თემა დასრულდა. თუ ამ სტრიქონებს კითხულობ, მაშინ ძალიან მაგარი ხარ.

იმიტომ რომ ადამიანების მხოლოდ 5%-ს შეუძლია რაღაცის დაუფლება დამოუკიდებლად. და თუ ბოლომდე წაიკითხე, მაშინ 5%-ში ხარ!

ახლა ყველაზე მთავარი.

თქვენ გაარკვიეთ თეორია ამ თემაზე. და, ვიმეორებ, ეს ... უბრალოდ სუპერა! თქვენ უკვე უკეთესი ხართ, ვიდრე თქვენი თანატოლების უმრავლესობა.

პრობლემა ის არის, რომ ეს შეიძლება არ იყოს საკმარისი ...

Რისთვის?

გამოცდის წარმატებით ჩაბარებისთვის, ბიუჯეტში ინსტიტუტში ჩასაბარებლად და, რაც მთავარია, უვადოდ.

არაფერში არ დაგარწმუნებთ, მხოლოდ ერთს გეტყვით...

ადამიანები, რომლებმაც მიიღეს კარგი განათლება, ბევრად მეტს გამოიმუშავებენ, ვიდრე მათ, ვინც არ მიუღია. ეს არის სტატისტიკა.

მაგრამ ეს არ არის მთავარი.

მთავარია, რომ ისინი უფრო ბედნიერები არიან (არის ასეთი კვლევები). ალბათ იმიტომ, რომ ბევრად მეტი შესაძლებლობა იხსნება მათ წინაშე და ცხოვრება უფრო ნათელი ხდება? არ ვიცი...

მაგრამ შენ თვითონ იფიქრე...

რა არის საჭირო იმისთვის, რომ გამოცდაზე სხვებზე უკეთესი იყო და საბოლოოდ ... ბედნიერი?

შეავსეთ ხელი, გადაჭრით პრობლემებს ამ თემაზე.

გამოცდაზე თეორიას არ მოგთხოვენ.

დაგჭირდებათ დროულად მოაგვარეთ პრობლემები.

და, თუ თქვენ არ მოაგვარეთ ისინი (ბევრი!), აუცილებლად დაუშვებთ სადღაც სულელურ შეცდომას ან უბრალოდ დროულად არ დაუშვებთ.

ეს სპორტშია - თქვენ უნდა გაიმეოროთ ბევრჯერ, რომ აუცილებლად გაიმარჯვოთ.

იპოვეთ კოლექცია სადაც გინდათ აუცილებლად გადაწყვეტილებებით, დეტალური ანალიზითდა გადაწყვიტე, გადაწყვიტე, გადაწყვიტე!

თქვენ შეგიძლიათ გამოიყენოთ ჩვენი ამოცანები (აუცილებელი არ არის) და ჩვენ აუცილებლად გირჩევთ მათ.

იმისათვის, რომ ხელი მოკიდოთ ჩვენს ამოცანებს, თქვენ უნდა დაეხმაროთ YouClever სახელმძღვანელოს სიცოცხლის გახანგრძლივებას, რომელსაც ამჟამად კითხულობთ.

Როგორ? არის ორი ვარიანტი:

  1. განბლოკეთ წვდომა ამ სტატიაში ყველა ფარულ ამოცანაზე - 299 რუბლი.
  2. განბლოკეთ წვდომა ყველა ფარულ დავალებაზე სახელმძღვანელოს 99-ვე სტატიაში - 999 რუბლი.

დიახ, ჩვენ გვაქვს 99 ასეთი სტატია სახელმძღვანელოში და წვდომა ყველა დავალებაზე და მათში ყველა ფარულ ტექსტზე შეიძლება დაუყოვნებლივ გაიხსნას.

მეორე შემთხვევაში ჩვენ მოგცემთსიმულატორი "6000 დავალება გადაწყვეტილებებითა და პასუხებით, თითოეული თემისთვის, ყველა დონის სირთულისთვის." ეს ნამდვილად საკმარისია, რომ ხელი შეგიშალოთ რაიმე თემაზე პრობლემების გადაჭრაზე.

სინამდვილეში, ეს ბევრად მეტია, ვიდრე უბრალოდ სიმულატორი - მთელი სასწავლო პროგრამა. საჭიროების შემთხვევაში, თქვენ ასევე შეგიძლიათ გამოიყენოთ იგი უფასოდ.

ყველა ტექსტსა და პროგრამაზე წვდომა უზრუნველყოფილია საიტის მთელი სიცოცხლის მანძილზე.

Საბოლოოდ...

თუ არ მოგწონთ ჩვენი ამოცანები, იპოვეთ სხვები. უბრალოდ არ გაჩერდე თეორიით.

"გასაგებია" და "მე ვიცი როგორ გადაჭრა" სრულიად განსხვავებული უნარებია. ორივე გჭირდება.

იპოვე პრობლემები და მოაგვარე!


დიახ, დიახ: არითმეტიკული პროგრესია თქვენთვის სათამაშო არ არის :)

კარგი, მეგობრებო, თუ თქვენ კითხულობთ ამ ტექსტს, მაშინ შიდა ქუდის მტკიცებულება მეუბნება, რომ თქვენ ჯერ კიდევ არ იცით რა არის არითმეტიკული პროგრესია, მაგრამ ნამდვილად (არა, ასე: SOOOOO!) გსურთ იცოდეთ. ამიტომ, მე არ დაგტანჯავთ ხანგრძლივი შესავლებით და მაშინვე საქმეს გადავალ.

დასაწყისისთვის, რამდენიმე მაგალითი. განვიხილოთ რიცხვების რამდენიმე ნაკრები:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

რა საერთო აქვს ყველა ამ კომპლექტს? ერთი შეხედვით არაფერი. მაგრამ რეალურად არის რაღაც. კერძოდ: ყოველი შემდეგი ელემენტი წინადან ერთი და იგივე რაოდენობით განსხვავდება.

თავად განსაჯეთ. პირველი ნაკრები არის მხოლოდ თანმიმდევრული რიცხვები, თითოეული წინაზე მეტი. მეორე შემთხვევაში, სხვაობა მეზობელ რიცხვებს შორის უკვე უდრის ხუთს, მაგრამ ეს სხვაობა მაინც მუდმივია. მესამე შემთხვევაში ზოგადად ფესვებია. თუმცა, $2\sqrt(2)=\sqrt(2)+\sqrt(2)$, ხოლო $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, ე.ი. ამ შემთხვევაში ყოველი შემდეგი ელემენტი უბრალოდ იზრდება $\sqrt(2)$-ით (და არ შეგეშინდეთ, რომ ეს რიცხვი ირაციონალურია).

ასე რომ: ყველა ასეთ მიმდევრობას უბრალოდ არითმეტიკული პროგრესია ეწოდება. მოდით მივცეთ მკაცრი განმარტება:

განმარტება. რიცხვების თანმიმდევრობას, რომლებშიც ყოველი შემდეგი განსხვავდება წინადან ზუსტად იმავე რაოდენობით, არითმეტიკული პროგრესია ეწოდება. იმ რაოდენობას, რომლითაც რიცხვები განსხვავდება, ეწოდება პროგრესირების განსხვავება და ყველაზე ხშირად აღინიშნება ასო $d$-ით.

აღნიშვნა: $\left(((a)_(n)) \right)$ არის თავად პროგრესია, $d$ არის მისი განსხვავება.

და მხოლოდ რამდენიმე მნიშვნელოვანი შენიშვნა. პირველ რიგში, მხოლოდ პროგრესირება განიხილება მოწესრიგებულირიცხვების თანმიმდევრობა: ნებადართულია მათი წაკითხვა მკაცრად იმ თანმიმდევრობით, რომლითაც ისინი იწერება - და სხვა არაფერი. თქვენ არ შეგიძლიათ ნომრების გადაწყობა ან გაცვლა.

მეორეც, თანმიმდევრობა თავისთავად შეიძლება იყოს სასრული ან უსასრულო. მაგალითად, სიმრავლე (1; 2; 3) აშკარად სასრულ არითმეტიკული პროგრესიაა. მაგრამ თუ დაწერთ რაღაცას (1; 2; 3; 4; ...) - ეს უკვე უსასრულო პროგრესიაა. ელიფსისი ოთხის შემდეგ, თითქოსდა, მიანიშნებს, რომ საკმაოდ ბევრი რიცხვი უფრო შორს მიდის. უსაზღვროდ ბევრი, მაგალითად. :)

ასევე მინდა აღვნიშნო, რომ პროგრესი იზრდება და კლებულობს. ჩვენ უკვე ვნახეთ მზარდი - იგივე ნაკრები (1; 2; 3; 4; ...). აქ მოცემულია პროგრესირების შემცირების მაგალითები:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

კარგი, კარგი: ბოლო მაგალითი შეიძლება ზედმეტად რთული ჩანდეს. მაგრამ დანარჩენი, ვფიქრობ, გესმით. ამიტომ, ჩვენ შემოგთავაზებთ ახალ განმარტებებს:

განმარტება. არითმეტიკული პროგრესია ეწოდება:

  1. იზრდება, თუ ყოველი შემდეგი ელემენტი მეტია წინაზე;
  2. მცირდება, თუ პირიქით, ყოველი მომდევნო ელემენტი წინაზე ნაკლებია.

გარდა ამისა, არსებობს ეგრეთ წოდებული "სტაციონარული" მიმდევრობები - ისინი შედგება ერთი და იგივე განმეორებადი რიცხვისგან. მაგალითად, (3; 3; 3; ...).

რჩება მხოლოდ ერთი კითხვა: როგორ განვასხვავოთ მზარდი პროგრესი კლებისგან? საბედნიეროდ, აქ ყველაფერი დამოკიდებულია მხოლოდ $d$ რიცხვის ნიშანზე, ე.ი. პროგრესირების განსხვავებები:

  1. თუ $d \gt 0$, მაშინ პროგრესი იზრდება;
  2. თუ $d \lt 0$, მაშინ პროგრესი აშკარად მცირდება;
  3. და ბოლოს, არის შემთხვევა $d=0$ - ამ შემთხვევაში მთელი პროგრესია მცირდება იდენტური რიცხვების სტაციონარული მიმდევრობით: (1; 1; 1; 1; ...) და ა.შ.

შევეცადოთ გამოვთვალოთ სხვაობა $d$ ზემოთ სამი კლებადი პროგრესიისთვის. ამისათვის საკმარისია აიღოთ ნებისმიერი ორი მომიჯნავე ელემენტი (მაგალითად, პირველი და მეორე) და გამოვაკლოთ მარცხნივ მდებარე რიცხვი მარჯვენა რიცხვს. ეს ასე გამოიყურება:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

როგორც ხედავთ, სამივე შემთხვევაში განსხვავება მართლაც უარყოფითი აღმოჩნდა. ახლა კი, როცა მეტ-ნაკლებად გავარკვიეთ განმარტებები, დროა გავიგოთ, როგორ არის აღწერილი პროგრესიები და რა თვისებები აქვთ მათ.

პროგრესიისა და განმეორებითი ფორმულის წევრები

ვინაიდან ჩვენი თანმიმდევრობის ელემენტების შეცვლა შეუძლებელია, მათი დანომრვა შესაძლებელია:

\[\left(((a)_(n)) \მარჯვნივ)=\მარცხნივ\(((a)_(1)),\ ((a)_(2)),((a)_(3 )),... \მარჯვნივ\)\]

ამ ნაკრების ცალკეულ ელემენტებს პროგრესიის წევრებს უწოდებენ. ისინი ამ გზით მითითებულია რიცხვის დახმარებით: პირველი წევრი, მეორე წევრი და ა.შ.

გარდა ამისა, როგორც უკვე ვიცით, პროგრესიის მეზობელი წევრები დაკავშირებულია ფორმულით:

\[((a)_(n))-((a)_(n-1))=d\მარჯვენა ისარი ((a)_(n))=((a)_(n-1))+d \]

მოკლედ, პროგრესიის $n$th ტერმინის საპოვნელად, თქვენ უნდა იცოდეთ $n-1$th წევრი და სხვაობა $d$. ასეთ ფორმულას ეწოდება განმეორებადი, რადგან მისი დახმარებით შეგიძლიათ იპოვოთ ნებისმიერი რიცხვი, მხოლოდ წინას (და სინამდვილეში, ყველა წინას) ცოდნა. ეს ძალიან მოუხერხებელია, ამიტომ არსებობს უფრო რთული ფორმულა, რომელიც ამცირებს ნებისმიერ გამოთვლას პირველ ტერმინამდე და განსხვავებას:

\[((a)_(n))=((a)_(1))+\მარცხნივ(n-1 \მარჯვნივ)d\]

თქვენ ალბათ ადრე შეგხვედრიათ ეს ფორმულა. მათ მოსწონთ მისი მიცემა ყველა სახის საცნობარო წიგნში და რეებნიკებში. და მათემატიკის ნებისმიერ გონივრული სახელმძღვანელოში ის ერთ-ერთი პირველია.

თუმცა, გირჩევთ, ცოტა ივარჯიშოთ.

დავალება ნომერი 1. ჩაწერეთ არითმეტიკული პროგრესიის პირველი სამი წევრი $\left(((a)_(n)) \right)$ თუ $((a)_(1))=8,d=-5$.

გადაწყვეტილება. ასე რომ, ჩვენ ვიცით პირველი წევრი $((a)_(1))=8$ და პროგრესიის სხვაობა $d=-5$. მოდით გამოვიყენოთ მოცემული ფორმულა და ჩავანაცვლოთ $n=1$, $n=2$ და $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \მარჯვნივ)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \მარჯვნივ)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\მარცხნივ(2-1 \მარჯვნივ)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\მარცხნივ(3-1 \მარჯვნივ)d=((a)_(1))+2d=8-10= -2. \\ \ბოლო (გასწორება)\]

პასუხი: (8; 3; -2)

Სულ ეს არის! გაითვალისწინეთ, რომ ჩვენი პროგრესი მცირდება.

რა თქმა უნდა, $n=1$-ის ჩანაცვლება არ შეიძლებოდა - ჩვენ უკვე ვიცით პირველი ტერმინი. თუმცა, ერთეულის ჩანაცვლებით, ჩვენ დავრწმუნდით, რომ პირველი ტერმინისთვისაც კი ჩვენი ფორმულა მუშაობს. სხვა შემთხვევებში ყველაფერი ბანალურ არითმეტიკამდე მიდიოდა.

დავალება ნომერი 2. ჩაწერეთ არითმეტიკული პროგრესიის პირველი სამი წევრი, თუ მისი მეშვიდე წევრია −40 და მეჩვიდმეტე წევრი არის −50.

გადაწყვეტილება. ჩვენ ვწერთ პრობლემის მდგომარეობას ჩვეულებრივი პირობებით:

\[((a)_(7))=-40;\ quad ((a)_(17))=-50.\]

\[\მარცხნივ\( \დაწყება(გასწორება) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=(a) _(1))+16d \\ \ბოლო (გასწორება) \მარჯვნივ.\]

\[\მარცხნივ\( \დაწყება(გასწორება) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \ბოლო (გასწორება) \მარჯვნივ.\]

სისტემის ნიშანი იმიტომ დავდე, რომ ეს მოთხოვნები ერთდროულად უნდა დაკმაყოფილდეს. ახლა კი აღვნიშნავთ, რომ თუ პირველ განტოლებას გამოვაკლებთ მეორე განტოლებას (ჩვენ გვაქვს ამის უფლება, რადგან გვაქვს სისტემა), მივიღებთ ამას:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \მარჯვნივ); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\ & 10d=-10; \\&d=-1. \\ \ბოლო (გასწორება)\]

სწორედ ასე, ჩვენ აღმოვაჩინეთ პროგრესის განსხვავება! რჩება აღმოჩენილი რიცხვის ჩანაცვლება სისტემის რომელიმე განტოლებაში. მაგალითად, პირველში:

\[\ დასაწყისი(მატრიცა) ((a)_(1))+6d=-40;\quad d=-1 \\ \ქვემოთ \\ ((a)_(1))-6=-40; \\ ((ა)_(1))=-40+6=-34. \\ \დასრულება (მატრიცა)\]

ახლა, პირველი ტერმინისა და განსხვავების ცოდნით, რჩება მეორე და მესამე ტერმინების პოვნა:

\[\ დასაწყისი(გასწორება) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \ბოლო (გასწორება)\]

მზადაა! პრობლემა მოგვარებულია.

პასუხი: (-34; -35; -36)

ყურადღება მიაქციეთ პროგრესიის კურიოზულ თვისებას, რომელიც აღმოვაჩინეთ: თუ ავიღებთ $n$th და $m$th ტერმინებს და გამოვაკლებთ მათ ერთმანეთს, მაშინ მივიღებთ პროგრესიის სხვაობას გამრავლებული $n-m$ რიცხვზე:

\[((a)_(n))-((a)_(m))=d\cdot \მარცხნივ(n-m \მარჯვნივ)\]

მარტივი, მაგრამ ძალიან სასარგებლო თვისება, რომელიც აუცილებლად უნდა იცოდეთ - მისი დახმარებით შეგიძლიათ მნიშვნელოვნად დააჩქაროთ მრავალი პრობლემის გადაჭრა პროგრესებში. აი ამის ნათელი მაგალითი:

დავალება ნომერი 3. არითმეტიკული პროგრესიის მეხუთე წევრია 8,4, ხოლო მისი მეათე წევრი არის 14,4. იპოვეთ ამ პროგრესიის მეთხუთმეტე წევრი.

გადაწყვეტილება. ვინაიდან $((a)_(5))=8.4$, $((a)_(10))=14.4$ და ჩვენ უნდა ვიპოვოთ $((a)_(15))$, აღვნიშნავთ შემდეგს:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5დ. \\ \ბოლო (გასწორება)\]

მაგრამ პირობით $((a)_(10))-((a)_(5))=14.4-8.4=6$, ანუ $5d=6$, საიდანაც გვაქვს:

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14.4=20.4. \\ \ბოლო (გასწორება)\]

პასუხი: 20.4

Სულ ეს არის! ჩვენ არ დაგვჭირდა განტოლებათა სისტემის შედგენა და პირველი წევრის და სხვაობის გამოთვლა - ყველაფერი რამდენიმე სტრიქონში გადაწყდა.

ახლა განვიხილოთ სხვა ტიპის პრობლემა - პროგრესის უარყოფითი და პოზიტიური წევრების ძიება. საიდუმლო არ არის, რომ თუ პროგრესი იზრდება, ხოლო მისი პირველი ტერმინი უარყოფითია, ადრე თუ გვიან მასში დადებითი ტერმინები გამოჩნდება. და პირიქით: კლებადი პროგრესირების პირობები ადრე თუ გვიან გახდება უარყოფითი.

ამავდროულად, ყოველთვის არ არის შესაძლებელი ამ მომენტის პოვნა "შუბლზე", ელემენტების თანმიმდევრულად დახარისხება. ხშირად, პრობლემები ისეა შექმნილი, რომ ფორმულების ცოდნის გარეშე, გამოთვლებს რამდენიმე ფურცელი დასჭირდება - უბრალოდ ვიძინებდით, სანამ პასუხს არ ვიპოვით. ამიტომ ვეცდებით ამ პრობლემების უფრო სწრაფად გადაჭრას.

დავალება ნომერი 4. რამდენი უარყოფითი წევრია არითმეტიკული პროგრესიაში -38,5; -35,8; …?

გადაწყვეტილება. ასე რომ, $((a)_(1))=-38.5$, $((a)_(2))=-35.8$, საიდანაც დაუყოვნებლივ ვპოულობთ განსხვავებას:

გაითვალისწინეთ, რომ განსხვავება დადებითია, ამიტომ პროგრესი იზრდება. პირველი წევრი უარყოფითია, ასე რომ, რაღაც მომენტში ჩვენ წავაწყდებით დადებით რიცხვებს. ერთადერთი საკითხია, როდის მოხდება ეს.

შევეცადოთ გავარკვიოთ: რამდენ ხანს (ე.ი. რომელ ბუნებრივ რიცხვამდე $n$) არის დაცული ტერმინების ნეგატიურობა:

\[\begin(align) & ((a)_(n)) \lt 0\Rightarrow ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38.5+\მარცხნივ(n-1 \მარჯვნივ)\cdot 2.7 \lt 0;\quad \left| \cdot 10 \მარჯვნივ. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\rightarrow ((n)_(\max ))=15. \\ \ბოლო (გასწორება)\]

ბოლო სტრიქონი დაზუსტებას საჭიროებს. ასე რომ, ჩვენ ვიცით, რომ $n \lt 15\frac(7)(27)$. მეორე მხრივ, რიცხვის მხოლოდ მთელი მნიშვნელობები მოგვწონს (უფრო მეტიც: $n\in \mathbb(N)$), ამიტომ ყველაზე დიდი დასაშვები რიცხვი არის ზუსტად $n=15$ და არავითარ შემთხვევაში 16.

დავალება ნომერი 5. არითმეტიკული პროგრესიით $(()_(5))=-150,(()_(6))=-147$. იპოვეთ ამ პროგრესიის პირველი დადებითი წევრის რიცხვი.

ეს იქნება ზუსტად იგივე პრობლემა, როგორც წინა, მაგრამ ჩვენ არ ვიცით $((a)_(1))$. მაგრამ მეზობელი ტერმინები ცნობილია: $((a)_(5))$ და $((a)_(6))$, ასე რომ, ჩვენ შეგვიძლია მარტივად ვიპოვოთ პროგრესიის განსხვავება:

გარდა ამისა, შევეცადოთ გამოვხატოთ მეხუთე ტერმინი პირველის და სხვაობის თვალსაზრისით სტანდარტული ფორმულის გამოყენებით:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162. \\ \ბოლო (გასწორება)\]

ახლა ჩვენ გავაგრძელებთ წინა პრობლემის ანალოგიით. ჩვენ გავარკვიეთ, რომელ მომენტში გამოჩნდება ჩვენი მიმდევრობის დადებითი რიცხვები:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \მარჯვნივ)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Rightarrow ((n)_(\min ))=56. \\ \ბოლო (გასწორება)\]

ამ უტოლობის მინიმალური მთელი რიცხვი არის რიცხვი 56.

გთხოვთ გაითვალისწინოთ: in ბოლო დავალებაყველაფერი მკაცრ უთანასწორობამდე მივიდა, ამიტომ ვარიანტი $n=55$ არ მოგვწონს.

ახლა, როდესაც ვისწავლეთ მარტივი პრობლემების გადაჭრა, მოდით გადავიდეთ უფრო რთულზე. მაგრამ ჯერ გავიგოთ არითმეტიკული პროგრესიების კიდევ ერთი ძალიან სასარგებლო თვისება, რომელიც დაგვიზოგავს უამრავ დროს და არათანაბარ უჯრედებს მომავალში. :)

საშუალო არითმეტიკული და ტოლი შეწევა

განვიხილოთ მზარდი არითმეტიკული პროგრესიის რამდენიმე თანმიმდევრული წევრი $\left(((a)_(n)) \right)$. შევეცადოთ აღვნიშნოთ ისინი რიცხვით ხაზზე:

არითმეტიკული პროგრესიის წევრები რიცხვთა წრფეზე

მე კონკრეტულად აღვნიშნე თვითნებური წევრები $((a)_(n-3)),...,((a)_(n+3))$, და არა $((a)_(1)) , \ ((ა)_(2)),\ ((ა)_(3))$ და ა.შ. რადგან წესი, რომელსაც ახლა გეტყვით, ნებისმიერ „სეგმენტზე“ ერთნაირად მუშაობს.

და წესი ძალიან მარტივია. გავიხსენოთ რეკურსიული ფორმულა და ჩავწეროთ ყველა მონიშნული წევრისთვის:

\[\ დასაწყისი(გასწორება) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \ბოლო (გასწორება)\]

თუმცა, ეს თანასწორობები შეიძლება სხვაგვარად გადაიწეროს:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \ბოლო (გასწორება)\]

აბა, მერე რა? მაგრამ ის ფაქტი, რომ ტერმინები $((a)_(n-1))$ და $((a)_(n+1))$ $((a)_(n)) $-დან ერთსა და იმავე მანძილზე მდებარეობს. . და ეს მანძილი $d$-ის ტოლია. იგივე შეიძლება ითქვას ტერმინებზე $((a)_(n-2))$ და $((a)_(n+2))$ - ისინი ასევე ამოღებულია $((a)_(n)-დან. )$ იგივე მანძილით უდრის $2d$-ს. შეგიძლიათ გააგრძელოთ განუსაზღვრელი ვადით, მაგრამ სურათი კარგად ასახავს მნიშვნელობას


პროგრესიის წევრები ცრუობენ ცენტრიდან იმავე მანძილზე

რას ნიშნავს ეს ჩვენთვის? ეს ნიშნავს, რომ თქვენ შეგიძლიათ იპოვოთ $((a)_(n))$, თუ ცნობილია მეზობელი ნომრები:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

ჩვენ გამოვიტანეთ შესანიშნავი განცხადება: არითმეტიკული პროგრესიის თითოეული წევრი უდრის მეზობელი წევრების საშუალო არითმეტიკულს! უფრო მეტიც, ჩვენ შეგვიძლია გადავუხვიოთ $((a)_(n))$-დან მარცხნივ და მარჯვნივ არა ერთი ნაბიჯით, არამედ $k$ ნაბიჯებით - და მაინც ფორმულა სწორი იქნება:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

იმათ. ჩვენ მარტივად შეგვიძლია ვიპოვოთ $((a)_(150))$ თუ ვიცით $((a)_(100))$ და $((a)_(200))$, რადგან $((a)_ (150))=\frac(((a)_(100))+((a)_(200)))(2)$. ერთი შეხედვით შეიძლება მოგვეჩვენოს, რომ ეს ფაქტი არაფერს არ გვაძლევს სასარგებლო. თუმცა, პრაქტიკაში, არითმეტიკული საშუალო გამოსაყენებლად სპეციალურად „გამახვილებულია“ მრავალი დავალება. Შეხედე:

დავალება ნომერი 6. იპოვეთ $x$-ის ყველა მნიშვნელობები ისე, რომ რიცხვები $-6((x)^(2))$, $x+1$ და $14+4((x)^(2))$ იყოს თანმიმდევრული წევრები არითმეტიკული პროგრესია (მითითებული თანმიმდევრობით).

გადაწყვეტილება. ვინაიდან მითითებული რიცხვები პროგრესიის წევრებია, მათთვის საშუალო არითმეტიკული პირობა დაკმაყოფილებულია: ცენტრალური ელემენტი$x+1$ შეიძლება გამოიხატოს მეზობელი ელემენტებით:

\[\begin(გასწორება) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \ბოლო (გასწორება)\]

შედეგი არის კლასიკური კვადრატული განტოლება. მისი ფესვები: $x=2$ და $x=-3$ არის პასუხები.

პასუხი: -3; 2.

დავალება ნომერი 7. იპოვეთ $$-ის მნიშვნელობები ისე, რომ რიცხვებმა $-1;4-3;(()^(2))+1$ შექმნან არითმეტიკული პროგრესია (ამ თანმიმდევრობით).

გადაწყვეტილება. კვლავ გამოვხატავთ შუა ტერმინს მეზობელი ტერმინების საშუალო არითმეტიკული თვალსაზრისით:

\[\begin(გასწორება) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \მარცხნივ| \cdot 2\right.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \ბოლო (გასწორება)\]

კიდევ ერთი კვადრატული განტოლება. და ისევ ორი ​​ფესვი: $x=6$ და $x=1$.

პასუხი: 1; 6.

თუ პრობლემის გადაჭრის პროცესში მიიღებთ რამდენიმე ბრუტალურ რიცხვს, ან ბოლომდე დარწმუნებული არ ხართ ნაპოვნი პასუხების სისწორეში, მაშინ არსებობს შესანიშნავი ხრიკი, რომელიც საშუალებას გაძლევთ შეამოწმოთ: სწორად გადავჭრით პრობლემა?

ვთქვათ, მე-6 ამოცანაში მივიღეთ პასუხები -3 და 2. როგორ შევამოწმოთ, რომ ეს პასუხები სწორია? მოდით შევაერთოთ ისინი თავდაპირველ მდგომარეობაში და ვნახოთ რა მოხდება. შეგახსენებთ, რომ გვაქვს სამი რიცხვი ($-6(()^(2))$, $+1$ და $14+4(()^(2))$), რომლებიც არითმეტიკულ პროგრესიას უნდა ქმნიდნენ. ჩანაცვლება $x=-3$:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \\ &x+1=-2; \\ & 14+4((x)^(2))=50. \ბოლო (გასწორება)\]

მივიღეთ ნომრები -54; −2; 50, რომელიც განსხვავდება 52-ით, უდავოდ არის არითმეტიკული პროგრესია. იგივე ხდება $x=2$-ზე:

\[\ დასაწყისი(გასწორება) & x=2\მარჯვენა ისარი \\ & -6((x)^(2))=-24; \\ &x+1=3; \\ & 14+4((x)^(2))=30. \ბოლო (გასწორება)\]

ისევ პროგრესია, მაგრამ 27-ის სხვაობით. ამგვარად, პრობლემა სწორად მოგვარებულია. მსურველებს შეუძლიათ დამოუკიდებლად შეამოწმონ მეორე დავალება, მაგრამ მე მაშინვე ვიტყვი: იქაც ყველაფერი სწორია.

ზოგადად, ბოლო ამოცანების ამოხსნისას სხვას წავაწყდით საინტერესო ფაქტი, რომელიც ასევე უნდა გვახსოვდეს:

თუ სამი რიცხვი ისეთია, რომ მეორე არის პირველი და ბოლო საშუალო, მაშინ ეს რიცხვები ქმნიან არითმეტიკულ პროგრესიას.

მომავალში, ამ განცხადების გაგება საშუალებას მოგვცემს ფაქტიურად „ავაშენოთ“ საჭირო პროგრესი პრობლემის მდგომარეობიდან გამომდინარე. მაგრამ სანამ ასეთ „მშენებლობას“ შევუდგებით, ყურადღება უნდა მივაქციოთ კიდევ ერთ ფაქტს, რომელიც პირდაპირ გამომდინარეობს უკვე განხილულიდან.

ელემენტების დაჯგუფება და ჯამი

დავუბრუნდეთ ისევ რიცხვთა ხაზს. ჩვენ აღვნიშნავთ პროგრესის რამდენიმე წევრს, რომელთა შორის, შესაძლოა. ღირს ბევრი სხვა წევრი:

რიცხვთა ხაზზე მონიშნულია 6 ელემენტი

შევეცადოთ გამოვხატოთ "მარცხენა კუდი" $((a)_(n))$-ით და $d$-ით, ხოლო "მარჯვენა კუდი" $((a)_(k))$-ით და $-ით. d$. ძალიან მარტივია:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((ა)_(კ-1))=((ა)_(კ))-დ; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \ბოლო (გასწორება)\]

ახლა გაითვალისწინეთ, რომ შემდეგი ჯამები ტოლია:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((ა)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= ს. \ბოლო (გასწორება)\]

მარტივად რომ ვთქვათ, თუ საწყისად განვიხილავთ პროგრესიის ორ ელემენტს, რომლებიც საერთო ჯამში $S$-ის რაღაც რიცხვის ტოლია და შემდეგ ამ ელემენტებიდან დავიწყებთ ნაბიჯს საპირისპირო მიმართულებით (ერთმანეთისკენ ან პირიქით გადასაადგილებლად), მაშინ ტოლი იქნება ელემენტების ჯამებიც, რომლებსაც წავაწყდებით$S$. ეს შეიძლება იყოს საუკეთესოდ წარმოდგენილი გრაფიკულად:


იგივე აბზაცები იძლევა თანაბარ ჯამებს

ამ ფაქტის გაგება საშუალებას მოგვცემს გადავჭრათ ფუნდამენტურად უფრო მაღალი დონის სირთულის პრობლემები, ვიდრე ზემოთ განვიხილეთ. მაგალითად, ესენი:

დავალება ნომერი 8. დაადგინეთ არითმეტიკული პროგრესიის სხვაობა, რომელშიც პირველი წევრი არის 66, ხოლო მეორე და მეთორმეტე წევრის ნამრავლი არის უმცირესი.

გადაწყვეტილება. მოდით დავწეროთ ყველაფერი, რაც ვიცით:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\წთ. \ბოლო (გასწორება)\]

ასე რომ, ჩვენ არ ვიცით $d$ პროგრესიის განსხვავება. სინამდვილეში, მთელი გამოსავალი აგებული იქნება სხვაობის გარშემო, რადგან პროდუქტი $((a)_(2))\cdot ((a)_(12))$ შეიძლება გადაიწეროს შემდეგნაირად:

\[\ დასაწყისი(გასწორება) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\მარცხნივ(66+d \მარჯვნივ)\cdot \left(66+11d \მარჯვნივ)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \მარჯვნივ). \ბოლო (გასწორება)\]

ავზში მყოფთათვის: მე ავიღე საერთო ფაქტორი 11 მეორე ფრჩხილიდან. ამრიგად, სასურველი პროდუქტი არის კვადრატული ფუნქცია $d$ ცვლადის მიმართ. ამიტომ, განიხილეთ ფუნქცია $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ - მისი გრაფიკი იქნება პარაბოლა ტოტებით ზემოთ, რადგან თუ ფრჩხილებს გავხსნით, მივიღებთ:

\[\ დასაწყისი (გასწორება) & f\ მარცხნივ(d \მარჯვნივ)=11\მარცხნივ(((დ)^(2))+66d+6d+66\cdot 6 \მარჯვნივ)= \\ & =11(( დ)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end (გასწორება)\]

როგორც ხედავთ, ყველაზე მაღალი წევრის კოეფიციენტი არის 11 - ეს არის დადებითი რიცხვი, ასე რომ, ჩვენ ნამდვილად გვაქვს საქმე პარაბოლასთან ტოტებით ზემოთ:


კვადრატული ფუნქციის გრაფიკი - პარაბოლა

გთხოვთ გაითვალისწინოთ: ეს პარაბოლა იღებს თავის მინიმალურ მნიშვნელობას თავის წვეროზე $((d)_(0))$ აბსცისით. რა თქმა უნდა, ჩვენ შეგვიძლია გამოვთვალოთ ეს აბსციზა სტანდარტული სქემის მიხედვით (არსებობს ფორმულა $((d)_(0))=(-b)/(2a)\;$), მაგრამ ბევრად უფრო გონივრული იქნება გაითვალისწინეთ, რომ სასურველი წვერო დევს პარაბოლას ღერძის სიმეტრიაზე, ამიტომ წერტილი $((d)_(0))$ თანაბარი მანძილითაა დაშორებული $f\left(d \right)=0$ განტოლების ფესვებისგან:

\[\begin(align) & f\left(d\right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((დ)_(1))=-66;\ოთხი ((დ)_(2))=-6. \\ \ბოლო (გასწორება)\]

ამიტომაც არ ვჩქარობდი ფრჩხილების გახსნას: თავდაპირველი სახით ფესვების პოვნა ძალიან, ძალიან ადვილი იყო. მაშასადამე, აბსციზა უდრის −66 და −6 რიცხვების საშუალო არითმეტიკულს:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

რა გვაძლევს აღმოჩენილ რიცხვს? მასთან ერთად, საჭირო პროდუქტი იღებს უმცირეს მნიშვნელობას (სხვათა შორის, ჩვენ არ გამოვთვალეთ $((y)_(\min ))$ - ეს ჩვენგან არ არის საჭირო). ამავდროულად, ეს რიცხვი არის საწყისი პროგრესიის სხვაობა, ე.ი. ვიპოვეთ პასუხი. :)

პასუხი: -36

დავალება ნომერი 9. ჩასვით სამი რიცხვი $-\frac(1)(2)$ და $-\frac(1)(6)$ რიცხვებს შორის ისე, რომ მოცემულ რიცხვებთან ერთად შექმნან არითმეტიკული პროგრესია.

გადაწყვეტილება. სინამდვილეში, ჩვენ უნდა შევქმნათ ხუთი რიცხვის მიმდევრობა, პირველი და ბოლო რიცხვი უკვე ცნობილია. გამოტოვებული რიცხვების აღნიშვნა $x$, $y$ და $z$ ცვლადებით:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \მარჯვნივ\ )\]

გაითვალისწინეთ, რომ რიცხვი $y$ არის ჩვენი მიმდევრობის „შუა“ - ის თანაბარი მანძილით არის დაშორებული $x$ და $z$ რიცხვებისგან და $-\frac(1)(2)$ და $-\frac რიცხვებისგან. (1)(6)$. და თუ ჩვენ ვართ $x$ და $z$ რიცხვებიდან ამ მომენტშიჩვენ ვერ მივიღებთ $y$-ს, მაშინ სიტუაცია განსხვავებულია პროგრესიის ბოლოებით. გახსოვდეთ საშუალო არითმეტიკული:

ახლა, ვიცით $y$, ჩვენ ვიპოვით დარჩენილ ნომრებს. გაითვალისწინეთ, რომ $x$ დევს $-\frac(1)(2)$-სა და $y=-\frac(1)(3)$-ს შორის. Ისე

ანალოგიურად კამათით, ჩვენ ვპოულობთ დარჩენილ რიცხვს:

მზადაა! სამივე ნომერი ვიპოვეთ. ჩავწეროთ ისინი პასუხში იმ თანმიმდევრობით, რომლითაც ისინი უნდა იყოს ჩასმული თავდაპირველ რიცხვებს შორის.

პასუხი: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

დავალება ნომერი 10. 2 და 42 რიცხვებს შორის ჩასვით რამდენიმე რიცხვი, რომლებიც მოცემულ რიცხვებთან ერთად ქმნიან არითმეტიკულ პროგრესიას, თუ ცნობილია, რომ ჩასმული რიცხვების პირველი, მეორე და ბოლო ჯამი არის 56.

გადაწყვეტილება. კიდევ უფრო რთული ამოცანა, რომელიც, თუმცა, წყდება ისევე, როგორც წინა - საშუალო არითმეტიკული გზით. პრობლემა ის არის, რომ ზუსტად არ ვიცით რამდენი რიცხვის ჩასმა. მაშასადამე, განსაზღვრულობისთვის, ჩვენ ვვარაუდობთ, რომ ჩასმის შემდეგ იქნება ზუსტად $n$ რიცხვები და მათგან პირველი არის 2, ხოლო ბოლო არის 42. ამ შემთხვევაში, სასურველი არითმეტიკული პროგრესია შეიძლება წარმოდგენილი იყოს როგორც:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( ა)_(n-1));42 \მარჯვნივ\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

თუმცა გაითვალისწინეთ, რომ რიცხვები $((a)_(2))$ და $((a)_(n-1))$ მიიღება კიდეებზე მდგომი რიცხვებიდან 2 და 42 ერთი ნაბიჯით ერთმანეთისკენ. , ე.ი. მიმდევრობის ცენტრამდე. და ეს იმას ნიშნავს

\[((a)_(2))+((a)_(n-1))=2+42=44\]

მაგრამ შემდეგ ზემოაღნიშნული გამოთქმა შეიძლება გადაიწეროს ასე:

\[\ დასაწყისი(გასწორება) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \მარჯვნივ)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \ბოლო (გასწორება)\]

თუ ვიცით $((a)_(3))$ და $((a)_(1))$, ჩვენ მარტივად შეგვიძლია ვიპოვოთ პროგრესირების განსხვავება:

\[\ დასაწყისი(გასწორება) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\მარცხნივ(3-1 \მარჯვნივ)\cdot d=2d; \\ & 2d=10\მარჯვენა ისარი d=5. \\ \ბოლო (გასწორება)\]

რჩება მხოლოდ დარჩენილი წევრების პოვნა:

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \ბოლო (გასწორება)\]

ამრიგად, უკვე მე-9 საფეხურზე მივალთ მიმდევრობის მარცხენა ბოლოში - რიცხვი 42. ჯამში მხოლოდ 7 რიცხვის ჩასმა იყო საჭირო: 7; 12; 17; 22; 27; 32; 37.

პასუხი: 7; 12; 17; 22; 27; 32; 37

ტექსტური ამოცანები პროგრესიით

დასასრულს, მსურს განვიხილო რამდენიმე შედარებით მარტივი პრობლემა. ისე, როგორც მარტივი: სტუდენტების უმრავლესობისთვის, რომლებიც მათემატიკას სწავლობენ სკოლაში და არ წაკითხული აქვთ ზემოთ დაწერილი, ეს ამოცანები შეიძლება ჟესტივით ჩანდეს. მიუხედავად ამისა, სწორედ ასეთი ამოცანები გვხვდება OGE-ში და მათემატიკაში USE-ში, ამიტომ გირჩევთ გაეცნოთ მათ.

დავალება ნომერი 11. გუნდმა იანვარში დაამზადა 62 ნაწილი, ხოლო ყოველ მომდევნო თვეში 14-ით მეტი ნაწილი გამოუშვა, ვიდრე წინა. რამდენი ნაწილი გამოუშვა ბრიგადამ ნოემბერში?

გადაწყვეტილება. ცხადია, თვეების მიხედვით დახატული ნაწილების რაოდენობა მზარდი არითმეტიკული პროგრესია იქნება. და:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\მარცხნივ(n-1 \მარჯვნივ)\cdot 14. \\ \end (გასწორება)\]

ნოემბერი არის წლის მე-11 თვე, ამიტომ უნდა ვიპოვოთ $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

შესაბამისად, ნოემბერში 202 ნაწილის დამზადება მოხდება.

დავალება ნომერი 12. იანვარში წიგნების აკინძვის სახელოსნომ 216 წიგნი შეკრა და ყოველთვიურად წინა თვესთან შედარებით 4 წიგნით მეტი აკრა. რამდენი წიგნი შეიკრა სახელოსნომ დეკემბერში?

გადაწყვეტილება. Ერთი და იგივე:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\მარცხნივ(n-1 \მარჯვნივ)\cdot 4. \\ \end (გასწორება)$

დეკემბერი არის წლის ბოლო, მე-12 თვე, ამიტომ ჩვენ ვეძებთ $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

ეს არის პასუხი - დეკემბერში 260 წიგნი იკვრება.

აბა, თუ აქამდე წაიკითხეთ, მეჩქარება მოგილოცოთ: თქვენ წარმატებით დაასრულეთ არითმეტიკული პროგრესიების "ახალგაზრდა მებრძოლების კურსი". ჩვენ შეგვიძლია უსაფრთხოდ გადავიდეთ შემდეგ გაკვეთილზე, სადაც შევისწავლით პროგრესირების ჯამის ფორმულას, ასევე მისგან მნიშვნელოვან და ძალიან სასარგებლო შედეგებს.

  • საიტის სექციები